Code Coverage

Tutorial

Semicon Confidential

Semicon IC Design

raining Center

« Ask at any time

- Just speak out S
- Raise your hand only 1f “Bus Contention”
* No such thing as a “dumb” question

«Audience Assumptions

- Some knowledge about HDLs (Hardware
Design Languages)

- Some familiarity with RTL (Register Transfer
Level) 2

What are Coverage Tools?

Debugging aids which tells users how much
of a RTL (Register Transfer Level) design
has been exercised by a suite of verification

tests

Avallable in standard simulators (Modelsim
and Active-HDL)

Only work on RTL, not on primitives

Types of Coverage Tools

» Code Coverage (also called Statement
Coverage)

 Branch Coverage
* Toggle Coverage

Code Coverage
(Also called Statement Coverage)

« Code Coverage examines each executable
statement and checks to see If the statement
was executed during the simulations.

* [faline of code wasn’t executed, 1ts’s a safe
bet that you didn’t catch any bugs 1n it

of statements executed

Code Coverage =
of executable statements

5

Branch Coverage

(sometimes called Decision Coverage)

e Branc
IF anc

n Coverage examines each branch of
CASE statements and checks to see

If the
e Ifabr

ranch was taken

anch wasn’t taken, its’s a safe bet that

you didn’t catch any bugs 1n it

Branch Coverage =

of branches taken

of branches

Toggle Coverage

* Toggle Coverage examines each signal to
see 1f 1t was both ‘0’ and ‘1’

 Different modes of toggle coverage - check
your simulator’s documentation for details

Using Coverage Results

 Results for several tests can be merged

 Results can be viewed with a graphical tool
which shows which lines of code have or
have not been exercised

Why Use Coverage Tools?

 Let you know It your tests have covered all
of the design

« Adds very little, if any, overhead to your
run time

Important Things to Remember

Coverage tools do not grade your tests.

High coverage percentages only tell you
that exercised most of your code

“Necessary, but not Sufficient”

Need to sample outputs such that your tests
actually detect changes in all of the
exercised code

10

Testbench and Models

 Perform coverage on your testbench and
models as well as UUT (unit under test)

« Unexercised paths in your testbench may tip
you off to something that you didn’t test

11

Summary

» Coverage Tools are available in standard
simulators (ModelSim and Active-HDL)

— Code Coverage
— Branch Coverage
— Toggle coverage

* Very little overhead

* Need to make sure changes are propagated
to outputs and sampled

12

Demo

» See the example result

13

