
1

Semicon Confidential

Semicon IC Design Training Center

Code Coverage

Tutorial

2

Questions

• Ask at any time

- Just speak out

- Raise your hand only if “Bus Contention”

• No such thing as a “dumb” question

•Audience Assumptions

- Some knowledge about HDLs (Hardware

Design Languages)

- Some familiarity with RTL (Register Transfer

Level)

3

What are Coverage Tools?

• Debugging aids which tells users how much

of a RTL (Register Transfer Level) design

has been exercised by a suite of verification

tests

• Available in standard simulators (Modelsim

and Active-HDL)

• Only work on RTL, not on primitives

4

Types of Coverage Tools

• Code Coverage (also called Statement

Coverage)

• Branch Coverage

• Toggle Coverage

5

Code Coverage

(Also called Statement Coverage)

• Code Coverage examines each executable

statement and checks to see if the statement

was executed during the simulations.

• If a line of code wasn‟t executed, its‟s a safe

bet that you didn‟t catch any bugs in it

Code Coverage =
of statements executed

of executable statements

6

Branch Coverage
(sometimes called Decision Coverage)

• Branch Coverage examines each branch of

IF and CASE statements and checks to see

if the branch was taken

• If a branch wasn‟t taken, its‟s a safe bet that

you didn‟t catch any bugs in it

Branch Coverage =
of branches taken

of branches

7

Toggle Coverage

• Toggle Coverage examines each signal to

see if it was both „0‟ and „1‟

• Different modes of toggle coverage - check

your simulator‟s documentation for details

8

Using Coverage Results

• Results for several tests can be merged

• Results can be viewed with a graphical tool

which shows which lines of code have or

have not been exercised

9

Why Use Coverage Tools?

• Let you know it your tests have covered all

of the design

• Adds very little, if any, overhead to your

run time

10

Important Things to Remember

• Coverage tools do not grade your tests.

• High coverage percentages only tell you

that exercised most of your code

• “Necessary, but not Sufficient”

• Need to sample outputs such that your tests

actually detect changes in all of the

exercised code

11

Testbench and Models

• Perform coverage on your testbench and

models as well as UUT (unit under test)

• Unexercised paths in your testbench may tip

you off to something that you didn‟t test

12

Summary

• Coverage Tools are available in standard

simulators (ModelSim and Active-HDL)

– Code Coverage

– Branch Coverage

– Toggle coverage

• Very little overhead

• Need to make sure changes are propagated

to outputs and sampled

Demo

• See the example result

13

