
ARM IHI 0011A

AMBA™ Specification
(Rev 2.0)

ii © Copyright ARM Limited 1999. All rights reserved. ARM IHI 0011A

AMBA Specification
(Rev 2.0)
© Copyright ARM Limited 1999. All rights reserved.

Release information

Proprietary notice

ARM, the ARM Powered logo, Thumb and StrongARM are registered trademarks of ARM Limited.

The ARM logo, AMBA, PrimeCell, Angel, ARMulator, EmbeddedICE, ModelGen, Multi-ICE,
ARM7TDMI, ARM7TDMI-S, ARM9TDMI, TDMI and STRONG are trademarks of ARM Limited.

Document confidentiality status

This document is Open Access. This document has no restriction on distribution.

Product status

The information in this document is Final (information on a developed product).

ARM web address

http://www.arm.com

Change history

Date Issue Change

13th May 1999 A First release

All other products or services mentioned herein may be trademarks of their respective owners.

Neither the whole nor any part of the information contained in, or the product described in, this document may
be adapted or reproduced in any material form except with the prior written permission of the copyright
holder.

The product described in this document is subject to continuous developments and improvements. All
particulars of the product and its use contained in this document are given by ARM Limited in good faith.
However, all warranties implied or expressed, including but not limited to implied warranties or
merchantability, or fitness for purpose, are excluded.

This document is intended only to assist the reader in the use of the product. ARM Limited shall not be liable
for any loss or damage arising from the use of any information in this document, or any error or omission in
such information, or any incorrect use of the product.

ARM IHI 0011A © Copyright ARM Limited 1999. All rights reserved. iii

Preface

This preface introduces the Advanced Microcontroller Bus Architecture (AMBA)
specification. It contains the following sections:

• About this document on page iv

• Feedback on page vii.

iv © Copyright ARM Limited 1999. All rights reserved. ARM IHI 0011A

About this document

This document is the AMBA specification.

Intended audience

This document has been written to help experienced hardware and software engineers
to design modules that conform to the AMBA specification.

Organization

This document is organized into the following chapters:

Chapter 1 Introduction to the AMBA Buses

Read this chapter for an overview of the AMBA buses.

Chapter 2 AMBA Signals

Read this chapter for a description of the signals used by AMBA devices.

Chapter 3 AMBA AHB

Read this chapter for an introduction to the AMBA Advanced High-
performance Bus.

Chapter 4 AMBA ASB

Read this chapter for an introduction to the AMBA Advanced System
Bus.

Chapter 5 AMBA APB

Read this chapter for an introduction to the AMBA Advanced Peripheral
Bus.

Chapter 6 AMBA Test Methodology

Read this chapter for an introduction to the test methodology used in
AMBA buses.

ARM IHI 0011A © Copyright ARM Limited 1999. All rights reserved. v

Typographical conventions

The following typographical conventions are used in this document:

bold Highlights ARM processor signal names within text, and interface
elements such as menu names. May also be used for emphasis in
descriptive lists where appropriate.

italic Highlights special terminology, cross-references and citations.

typewriter Denotes text that may be entered at the keyboard, such as
commands, file names and program names, and source code.

typewriter Denotes a permitted abbreviation for a command or option. The
underlined text may be entered instead of the full command or
option name.

typewriter italic
Denotes arguments to commands or functions where the argument
is to be replaced by a specific value.

typewriter bold
Denotes language keywords when used outside example code.

vi © Copyright ARM Limited 1999. All rights reserved. ARM IHI 0011A

Timing diagram conventions

This manual contains one or more timing diagrams. The following key explains the
components used in these diagrams. Any variations are clearly labelled when they
occur. Therefore, no additional meaning should be attached unless specifically stated.

Key to timing diagram conventions

Shaded bus and signal areas are undefined, so the bus or signal can assume any value
within the shaded area at that time. The actual level is unimportant and does not affect
normal operation.

Clock

Bus stable

HIGH to LOW

Transient

Bus to high impedance

Bus change

HIGH/LOW to HIGH

High impedance to stable bus

ARM IHI 0011A © Copyright ARM Limited 1999. All rights reserved. vii

Feedback

ARM Limited welcomes feedback both on AMBA and the AMBA specification.

Feedback on this document

If you have any comments on this document, please send email to errata@arm.com
giving:

• the document title

• the document number

• the page number(s) to which your comments refer

• a concise explanation of your comments.

General suggestions for additions and improvements are also welcome.

Feedback on the AMBA Specification

If you have any comments or suggestions about this product, please contact your
supplier giving:

• the product name

• a concise explanation of your comments.

viii © Copyright ARM Limited 1999. All rights reserved. ARM IHI 0011A

ARM IHI 0011A © Copyright ARM Limited 1999. All rights reserved. ix

Contents
AMBA Specification

Preface
About this document ..iv
Feedback ..vii

 Chapter 1 Introduction to the AMBA Buses
1.1 Overview of the AMBA specification ...1-2
1.2 Objectives of the AMBA specification ...1-3
1.3 A typical AMBA-based microcontroller..1-4
1.4 Terminology ..1-6
1.5 Introducing the AMBA AHB...1-7
1.6 Introducing the AMBA ASB...1-9
1.7 Introducing the AMBA APB...1-10
1.8 Choosing the right bus for your system...1-12
1.9 Notes on the AMBA specification..1-14

 Chapter 2 AMBA Signals
2.1 AMBA signal names..2-2
2.2 AMBA AHB signal list..2-3
2.3 AMBA ASB signal list ..2-6
2.4 AMBA APB signal list ..2-8

x © Copyright ARM Limited 1999. All rights reserved. ARM IHI 0011A

 Chapter 3 AMBA AHB
3.1 About the AMBA AHB... 3-3
3.2 Bus interconnection .. 3-4
3.3 Overview of AMBA AHB operation ... 3-5
3.4 Basic transfer.. 3-6
3.5 Transfer type .. 3-9
3.6 Burst operation ... 3-11
3.7 Control signals.. 3-17
3.8 Address decoding... 3-19
3.9 Slave transfer responses.. 3-20
3.10 Data buses ... 3-25
3.11 Arbitration ... 3-28
3.12 Split transfers.. 3-35
3.13 Reset .. 3-40
3.14 About the AHB data bus width.. 3-41
3.15 Implementing a narrow slave on a wider bus ... 3-42
3.16 Implementing a wide slave on a narrow bus .. 3-43
3.17 About the AHB AMBA components .. 3-44
3.18 AHB bus slave .. 3-45
3.19 AHB bus master ... 3-49
3.20 AHB arbiter ... 3-53
3.21 AHB decoder .. 3-57

 Chapter 4 AMBA ASB
4.1 About the AMBA ASB... 4-2
4.2 AMBA ASB description... 4-4
4.3 ASB transfers ... 4-6
4.4 Address decode.. 4-14
4.5 Transfer response .. 4-16
4.6 Multi-master operation.. 4-19
4.7 Reset operation .. 4-23
4.8 Description of ASB signals ... 4-25
4.9 About the ASB AMBA components .. 4-46
4.10 ASB bus slave .. 4-47
4.11 ASB bus master.. 4-52
4.12 ASB decoder .. 4-63
4.13 ASB arbiter ... 4-71

 Chapter 5 AMBA APB
5.1 About the AMBA APB... 5-2
5.2 APB specification.. 5-4
5.3 About the APB AMBA components .. 5-7
5.4 APB bridge ... 5-8
5.5 APB slave ... 5-11
5.6 Interfacing APB to AHB .. 5-14
5.7 Interfacing APB to ASB .. 5-20
5.8 Interfacing rev D APB peripherals to rev 2.0 APB...................................... 5-22

ARM IHI 0011A © Copyright ARM Limited 1999. All rights reserved. xi

 Chapter 6 AMBA Test Methodology
6.1 About the AMBA test interface..6-2
6.2 External interface ..6-4
6.3 Test vector types...6-6
6.4 Test interface controller ..6-7
6.5 The AHB Test Interface Controller ..6-12
6.6 Example AMBA AHB test sequences ...6-17
6.7 The ASB test interface controller ..6-25
6.8 Example AMBA ASB test sequences..6-27

Index

xii © Copyright ARM Limited 1999. All rights reserved. ARM IHI 0011A

ARM IHI 0011A © Copyright ARM Limited 1999. All rights reserved. 1-1

Chapter 1
Introduction to the AMBA Buses

This chapter introduces the Advanced Microcontroller Bus Architecture (AMBA)
specification. The following sections are included:

• Overview of the AMBA specification on page 1-2

• Objectives of the AMBA specification on page 1-3

• A typical AMBA-based microcontroller on page 1-4

• Terminology on page 1-6

• Introducing the AMBA AHB on page 1-7

• Introducing the AMBA ASB on page 1-9

• Introducing the AMBA APB on page 1-10

• Choosing the right bus for your system on page 1-12

• Notes on the AMBA specification on page 1-14.

Introduction to the AMBA Buses

1-2 © Copyright ARM Limited 1999. All rights reserved. ARM IHI 0011A

1.1 Overview of the AMBA specification

The Advanced Microcontroller Bus Architecture (AMBA) specification defines an on-
chip communications standard for designing high-performance embedded
microcontrollers.

Three distinct buses are defined within the AMBA specification:

• the Advanced High-performance Bus (AHB)

• the Advanced System Bus (ASB)

• the Advanced Peripheral Bus (APB).

A test methodology is included with the AMBA specification which provides an
infrastructure for modular macrocell test and diagnostic access.

1.1.1 Advanced High-performance Bus (AHB)

The AMBA AHB is for high-performance, high clock frequency system modules.

The AHB acts as the high-performance system backbone bus. AHB supports the
efficient connection of processors, on-chip memories and off-chip external memory
interfaces with low-power peripheral macrocell functions. AHB is also specified to
ensure ease of use in an efficient design flow using synthesis and automated test
techniques.

1.1.2 Advanced System Bus (ASB)

The AMBA ASB is for high-performance system modules.

AMBA ASB is an alternative system bus suitable for use where the high-performance
features of AHB are not required. ASB also supports the efficient connection of
processors, on-chip memories and off-chip external memory interfaces with low-power
peripheral macrocell functions.

1.1.3 Advanced Peripheral Bus (APB)

The AMBA APB is for low-power peripherals.

AMBA APB is optimized for minimal power consumption and reduced interface
complexity to support peripheral functions. APB can be used in conjunction with either
version of the system bus.

Introduction to the AMBA Buses

ARM IHI 0011A © Copyright ARM Limited 1999. All rights reserved. 1-3

1.2 Objectives of the AMBA specification

The AMBA specification has been derived to satisfy four key requirements:

• to facilitate the right-first-time development of embedded microcontroller
products with one or more CPUs or signal processors

• to be technology-independent and ensure that highly reusable peripheral and
system macrocells can be migrated across a diverse range of IC processes and be
appropriate for full-custom, standard cell and gate array technologies

• to encourage modular system design to improve processor independence,
providing a development road-map for advanced cached CPU cores and the
development of peripheral libraries

• to minimize the silicon infrastructure required to support efficient on-chip and
off-chip communication for both operation and manufacturing test.

Introduction to the AMBA Buses

1-4 © Copyright ARM Limited 1999. All rights reserved. ARM IHI 0011A

1.3 A typical AMBA-based microcontroller

An AMBA-based microcontroller typically consists of a high-performance system
backbone bus (AMBA AHB or AMBA ASB), able to sustain the external memory
bandwidth, on which the CPU, on-chip memory and other Direct Memory Access
(DMA) devices reside. This bus provides a high-bandwidth interface between the
elements that are involved in the majority of transfers. Also located on the high-
performance bus is a bridge to the lower bandwidth APB, where most of the peripheral
devices in the system are located (see Figure 1-1).

Figure 1-1 A typical AMBA system

AMBA APB provides the basic peripheral macrocell communications infrastructure as
a secondary bus from the higher bandwidth pipelined main system bus. Such
peripherals typically:

• have interfaces which are memory-mapped registers

• have no high-bandwidth interfaces

• are accessed under programmed control.

* High performance
* Pipelined operation
* Multiple bus masters
* Burst transfers
* Split transactions

* High performance
* Pipelined operation
* Multiple bus masters

* Low power
* Latched address and control
* Simple interface
* Suitable for many peripherals

Timer

High-bandwidth
on-chip RAM

B
R
I
D
G
E

High-performance
ARM processor

High-bandwidth
External Memory

Interface

AHB or ASB APB

PIO

UART

Keypad

AHB to APB Bridge
or

ASB to APB Bridge

DMA bus
master

AMBA AHB AMBA ASB AMBA APB

Introduction to the AMBA Buses

ARM IHI 0011A © Copyright ARM Limited 1999. All rights reserved. 1-5

The external memory interface is application-specific and may only have a narrow data
path, but may also support a test access mode which allows the internal AMBA AHB,
ASB and APB modules to be tested in isolation with system-independent test sets.

Introduction to the AMBA Buses

1-6 © Copyright ARM Limited 1999. All rights reserved. ARM IHI 0011A

1.4 Terminology

The following terms are used throughout this specification.

Bus cycle A bus cycle is a basic unit of one bus clock period and for the
purpose of AMBA AHB or APB protocol descriptions is defined
from rising-edge to rising-edge transitions. An ASB bus cycle is
defined from falling-edge to falling-edge transitions. Bus signal
timing is referenced to the bus cycle clock.

Bus transfer An AMBA ASB or AHB bus transfer is a read or write operation
of a data object, which may take one or more bus cycles. The bus
transfer is terminated by a completion response from the
addressed slave.

The transfer sizes supported by AMBA ASB include byte (8-bit),
halfword (16-bit) and word (32-bit). AMBA AHB additionally
supports wider data transfers, including 64-bit and 128-bit
transfers. An AMBA APB bus transfer is a read or write operation
of a data object, which always requires two bus cycles.

Burst operation A burst operation is defined as one or more data transactions,
initiated by a bus master, which have a consistent width of
transaction to an incremental region of address space. The
increment step per transaction is determined by the width of
transfer (byte, halfword, word). No burst operation is supported
on the APB.

Introduction to the AMBA Buses

ARM IHI 0011A © Copyright ARM Limited 1999. All rights reserved. 1-7

1.5 Introducing the AMBA AHB

AHB is a new generation of AMBA bus which is intended to address the requirements
of high-performance synthesizable designs. It is a high-performance system bus that
supports multiple bus masters and provides high-bandwidth operation.

AMBA AHB implements the features required for high-performance, high clock
frequency systems including:

• burst transfers

• split transactions

• single-cycle bus master handover

• single-clock edge operation

• non-tristate implementation

• wider data bus configurations (64/128 bits).

Bridging between this higher level of bus and the current ASB/APB can be done
efficiently to ensure that any existing designs can be easily integrated.

An AMBA AHB design may contain one or more bus masters, typically a system would
contain at least the processor and test interface. However, it would also be common for
a Direct Memory Access (DMA) or Digital Signal Processor (DSP) to be included as
bus masters.

The external memory interface, APB bridge and any internal memory are the most
common AHB slaves. Any other peripheral in the system could also be included as an
AHB slave. However, low-bandwidth peripherals typically reside on the APB.

A typical AMBA AHB system design contains the following components:

AHB master A bus master is able to initiate read and write operations by
providing an address and control information. Only one bus
master is allowed to actively use the bus at any one time.

AHB slave A bus slave responds to a read or write operation within a given
address-space range. The bus slave signals back to the active
master the success, failure or waiting of the data transfer.

AHB arbiter The bus arbiter ensures that only one bus master at a time is
allowed to initiate data transfers. Even though the arbitration
protocol is fixed, any arbitration algorithm, such as highest
priority or fair access can be implemented depending on the
application requirements.

An AHB would include only one arbiter, although this would be
trivial in single bus master systems.

Introduction to the AMBA Buses

1-8 © Copyright ARM Limited 1999. All rights reserved. ARM IHI 0011A

AHB decoder The AHB decoder is used to decode the address of each transfer
and provide a select signal for the slave that is involved in the
transfer.

A single centralized decoder is required in all AHB
implementations.

Introduction to the AMBA Buses

ARM IHI 0011A © Copyright ARM Limited 1999. All rights reserved. 1-9

1.6 Introducing the AMBA ASB

ASB is the first generation of AMBA system bus. ASB sits above the current APB and
implements the features required for high-performance systems including:

• burst transfers

• pipelined transfer operation

• multiple bus master.

A typical AMBA ASB system may contain one or more bus masters. For example, at
least the processor and test interface. However, it would also be common for a Direct
Memory Access (DMA) or Digital Signal Processor (DSP) to be included as bus
masters.

The external memory interface, APB bridge and any internal memory are the most
common ASB slaves. Any other peripheral in the system could also be included as an
ASB slave. However, low-bandwidth peripherals typically reside on the APB.

An AMBA ASB system design typically contains the following components:

ASB master A bus master is able to initiate read and write operations by
providing an address and control information. Only one bus
master is allowed to actively use the bus at any one time.

ASB slave A bus slave responds to a read or write operation within a given
address-space range. The bus slave signals back to the active
master the success, failure or waiting of the data transfer.

ASB decoder The bus decoder performs the decoding of the transfer addresses
and selects slaves appropriately. The bus decoder also ensures that
the bus remains operational when no bus transfers are required.

A single centralized decoder is required in all ASB
implementations.

ASB arbiter The bus arbiter ensures that only one bus master at a time is
allowed to initiate data transfers. Even though the arbitration
protocol is fixed, any arbitration algorithm, such as highest
priority or fair access can be implemented depending on the
application requirements.

An ASB would include only one arbiter, although this would be
trivial in single bus master systems.

Introduction to the AMBA Buses

1-10 © Copyright ARM Limited 1999. All rights reserved. ARM IHI 0011A

1.7 Introducing the AMBA APB

The APB is part of the AMBA hierarchy of buses and is optimized for minimal power
consumption and reduced interface complexity.

The AMBA APB appears as a local secondary bus that is encapsulated as a single AHB
or ASB slave device. APB provides a low-power extension to the system bus which
builds on AHB or ASB signals directly.

The APB bridge appears as a slave module which handles the bus handshake and
control signal retiming on behalf of the local peripheral bus. By defining the APB
interface from the starting point of the system bus, the benefits of the system diagnostics
and test methodology can be exploited.

The AMBA APB should be used to interface to any peripherals which are low
bandwidth and do not require the high performance of a pipelined bus interface.

The latest revision of the APB is specified so that all signal transitions are only related
to the rising edge of the clock. This improvement ensures the APB peripherals can be
integrated easily into any design flow, with the following advantages:

• high-frequency operation easier to achieve

• performance is independent of the mark-space ratio of the clock

• static timing analysis is simplified by the use of a single clock edge

• no special considerations are required for automatic test insertion

• many Application Specific Integrated Circuit (ASIC) libraries have a better
selection of rising edge registers

• easy integration with cycle-based simulators.

These changes to the APB also make it simpler to interface it to the new AHB.

An AMBA APB implementation typically contains a single APB bridge which is
required to convert AHB or ASB transfers into a suitable format for the slave devices
on the APB. The bridge provides latching of all address, data and control signals, as
well as providing a second level of decoding to generate slave select signals for the APB
peripherals.

All other modules on the APB are APB slaves. The APB slaves have the following
interface specification:

• address and control valid throughout the access (unpipelined)

Introduction to the AMBA Buses

ARM IHI 0011A © Copyright ARM Limited 1999. All rights reserved. 1-11

• zero-power interface during non-peripheral bus activity (peripheral bus is static
when not in use)

• timing can be provided by decode with strobe timing (unclocked interface)

• write data valid for the whole access (allowing glitch-free transparent latch
implementations).

Introduction to the AMBA Buses

1-12 © Copyright ARM Limited 1999. All rights reserved. ARM IHI 0011A

1.8 Choosing the right bus for your system

Before deciding on which bus or buses you should use in your system, you should
consider the following:

• Choice of system bus

• System bus and peripheral bus

• When to use AMBA AHB/ASB or APB on page 1-13

1.8.1 Choice of system bus

Both AMBA AHB and ASB are available for use as the main system bus. Typically the
choice of system bus will depend on the interface provided by the system modules
required.

The AHB is recommended for all new designs, not only because it provides a higher-
bandwidth solution, but also because the single-clock-edge protocol results in a
smoother integration with design automation tools used during a typical ASIC
development.

1.8.2 System bus and peripheral bus

Building all peripherals as fully functional AHB or ASB modules is feasible but may
not always be desirable:

• In designs with a large number of peripheral macrocells the increased bus
loading may increase power dissipation and sacrifice performance.

• Where timing analysis is required, the slowest element on the bus will limit the
maximum performance.

• Many simple peripheral macrocells need latched addresses and control signals as
opposed to the high-bandwidth macrocells which benefit from pipelined
signalling.

• Many peripheral functions simply require a selection strobe which conveys
macrocell selection and read/write bus operation, without the requirement to
broadcast the high-frequency clock signal to every peripheral.

Introduction to the AMBA Buses

ARM IHI 0011A © Copyright ARM Limited 1999. All rights reserved. 1-13

1.8.3 When to use AMBA AHB/ASB or APB

A full AHB or ASB interface is used for:

• bus masters

• on-chip memory blocks

• external memory interfaces

• high-bandwidth peripherals with FIFO interfaces

• DMA slave peripherals.

A simple APB interface is recommended for:

• simple register-mapped slave devices

• very low power interfaces where clocks cannot be globally routed

• grouping narrow-bus peripherals to avoid loading the system bus.

Introduction to the AMBA Buses

1-14 © Copyright ARM Limited 1999. All rights reserved. ARM IHI 0011A

1.9 Notes on the AMBA specification

The following points should be considered when reading the AMBA specification:

• Technology independence

• Electrical characteristics

• Timing specification.

1.9.1 Technology independence

AMBA is a technology-independent on-chip protocol. The specification only details the
bus protocol at the clock cycle level.

1.9.2 Electrical characteristics

No information regarding the electrical characteristics is supplied within the AMBA
specification as this will be entirely dependent on the manufacturing process
technology that is selected for the design.

1.9.3 Timing specification

The AMBA protocol defines the behavior of various signals at the cycle level. The exact
timing requirements will depend on the process technology used and the frequency of
operation.

Because the exact timing requirements are not defined by the AMBA protocol, the
system integrator is given maximum flexibility in allocating the signal timing budget
amongst the various modules on the bus.

ARM IHI 0011A © Copyright ARM Limited 1999. All rights reserved. 2-1

Chapter 2
AMBA Signals

This chapter introduces the AMBA signals. It contains the following sections:

• AMBA signal names on page 2-2

• AMBA AHB signal list on page 2-3

• AMBA ASB signal list on page 2-6

• AMBA APB signal list on page 2-8.

AMBA Signals

2-2 © Copyright ARM Limited 1999. All rights reserved. ARM IHI 0011A

2.1 AMBA signal names

All AMBA signals are named such that the first letter of the name indicates which bus
the signal is associated with. A lower case n in the signal name indicates that the signal
is active LOW, otherwise signal names are always all upper case.

Test signals have a prefix T regardless of the bus type. More information on test signals
can be found in Chapter 6 AMBA Test Methodology.

2.1.1 AHB signal prefixes
H indicates an AHB signal.

For example, HREADY is the signal used to indicate that the data portion of an AHB
transfer can complete. It is active HIGH.

2.1.2 ASB signal prefixes
A is a unidirectional signal between ASB bus masters and the arbiter

B is an ASB signal

D is a unidirectional ASB decoder signal.

For example, BnRES is the ASB reset signal. It is active LOW.

2.1.3 APB signal prefixes
P indicates an APB signal.

For example, PCLK is the main clock used by the APB.

AMBA Signals

ARM IHI 0011A © Copyright ARM Limited 1999. All rights reserved. 2-3

2.2 AMBA AHB signal list

This section contains an overview of the AMBA AHB signals (see Table 2-1). A full
description of each of the signals can be found in later sections of this document.

All signals are prefixed with the letter H, ensuring that the AHB signals are
differentiated from other similarly named signals in a system design.

Table 2-1 AMBA AHB signals

Name Source Description

HCLK
Bus clock

Clock source This clock times all bus transfers. All signal
timings are related to the rising edge of HCLK.

HRESETn
Reset

Reset controller The bus reset signal is active LOW and is used to
reset the system and the bus. This is the only active
LOW signal.

HADDR[31:0]
Address bus

Master The 32-bit system address bus.

HTRANS[1:0]
Transfer type

Master Indicates the type of the current transfer, which can
be NONSEQUENTIAL, SEQUENTIAL, IDLE or
BUSY.

HWRITE
Transfer direction

Master When HIGH this signal indicates a write transfer
and when LOW a read transfer.

HSIZE[2:0]
Transfer size

Master Indicates the size of the transfer, which is typically
byte (8-bit), halfword (16-bit) or word (32-bit). The
protocol allows for larger transfer sizes up to a
maximum of 1024 bits.

HBURST[2:0]
Burst type

Master Indicates if the transfer forms part of a burst. Four,
eight and sixteen beat bursts are supported and the
burst may be either incrementing or wrapping.

HPROT[3:0]
Protection control

Master The protection control signals provide additional
information about a bus access and are primarily
intended for use by any module that wishes to
implement some level of protection.
The signals indicate if the transfer is an opcode
fetch or data access, as well as if the transfer is a
privileged mode access or user mode access. For
bus masters with a memory management unit these
signals also indicate whether the current access is
cacheable or bufferable.

AMBA Signals

2-4 © Copyright ARM Limited 1999. All rights reserved. ARM IHI 0011A

HWDATA[31:0]
Write data bus

Master The write data bus is used to transfer data from the
master to the bus slaves during write operations. A
minimum data bus width of 32 bits is
recommended. However, this may easily be
extended to allow for higher bandwidth operation.

HSELx
Slave select

Decoder Each AHB slave has its own slave select signal and
this signal indicates that the current transfer is
intended for the selected slave. This signal is
simply a combinatorial decode of the address bus.

HRDATA[31:0]
Read data bus

Slave The read data bus is used to transfer data from bus
slaves to the bus master during read operations. A
minimum data bus width of 32 bits is
recommended. However, this may easily be
extended to allow for higher bandwidth operation.

HREADY
Transfer done

Slave When HIGH the HREADY signal indicates that a
transfer has finished on the bus. This signal may be
driven LOW to extend a transfer.
Note: Slaves on the bus require HREADY as both
an input and an output signal.

HRESP[1:0]
Transfer response

Slave The transfer response provides additional
information on the status of a transfer.
Four different responses are provided, OKAY,
ERROR, RETRY and SPLIT.

Table 2-1 AMBA AHB signals (continued)

Name Source Description

AMBA Signals

ARM IHI 0011A © Copyright ARM Limited 1999. All rights reserved. 2-5

AMBA AHB also has a number of signals required to support multiple bus master
operation (see Table 2-2). Many of these arbitration signals are dedicated point to point
links and in Table 2-2 the suffix x indicates the signal is from module X. For example
there will be a number of HBUSREQx signals in a system, such as HBUSREQarm,
HBUSREQdma and HBUSREQtic.

Table 2-2 Arbitration signals

Name Source Description

HBUSREQx
Bus request

Master A signal from bus master x to the bus arbiter which
indicates that the bus master requires the bus. There is an
HBUSREQx signal for each bus master in the system, up to
a maximum of 16 bus masters.

HLOCKx
Locked transfers

Master When HIGH this signal indicates that the master requires
locked access to the bus and no other master should be
granted the bus until this signal is LOW.

HGRANTx
Bus grant

Arbiter This signal indicates that bus master x is currently the
highest priority master. Ownership of the address/control
signals changes at the end of a transfer when HREADY is
HIGH, so a master gets access to the bus when both
HREADY and HGRANTx are HIGH.

HMASTER[3:0]
Master number

Arbiter These signals from the arbiter indicate which bus master is
currently performing a transfer and is used by the slaves
which support SPLIT transfers to determine which master
is attempting an access.
The timing of HMASTER is aligned with the timing of the
address and control signals.

HMASTLOCK
Locked sequence

Arbiter Indicates that the current master is performing a locked
sequence of transfers. This signal has the same timing as the
HMASTER signal.

HSPLITx[15:0]
Split completion
request

Slave
(SPLIT-
capable)

This 16-bit split bus is used by a slave to indicate to the
arbiter which bus masters should be allowed to re-attempt a
split transaction.
Each bit of this split bus corresponds to a single bus master.

AMBA Signals

2-6 © Copyright ARM Limited 1999. All rights reserved. ARM IHI 0011A

2.3 AMBA ASB signal list

Table 2-3 lists the AMBA ASB signals.

Table 2-3 AMBA ASB signals

Name Description

AGNTx
Bus grant

A signal from the bus arbiter to a bus master x which indicates that the
bus master will be granted the bus when BWAIT is LOW. There is an
AGNTx signal for each bus master in the system, as well as an
associated bus request signal, AREQx.

AREQx
Bus request

A signal from bus master x to the bus arbiter which indicates that the
bus master requires the bus. There is an AREQx signal for each bus
master in the system, as well as an associated bus grant signal, AGNTx.

BA[31:0]
Address bus

The system address bus, which is driven by the active bus master.

BCLK
Bus clock

This clock times all bus transfers. Both the LOW phase and HIGH
phase of BCLK are used to control transfers on the bus.

BD[31:0]
Data bus

This is the bidirectional system data bus. The data bus is driven by the
current bus master during write transfers and by the selected bus slave
during read transfers.

BERROR
Error response

A transfer error is indicated by the selected bus slave using the
BERROR signal. When BERROR is HIGH a transfer error has
occurred, when BERROR is LOW then the transfer is successful. This
signal is also used in combination with the BLAST signal to indicate a
bus retract operation.
When no slave is selected this signal is driven by the bus decoder.

BLAST
Last response

This signal is driven by the selected bus slave to indicate if the current
transfer should be the last of a burst sequence. When BLAST is HIGH
the decoder must allow sufficient time for address decoding. When
BLAST is LOW, the next transfer may continue a burst sequence. This
signal is also used in combination with the BERROR signal to indicate
a bus retract operation.
When no slave is selected this signal is driven by the bus decoder.

BLOK
Locked transfers

When HIGH this signal indicates that the current transfer and the next
transfer are to be indivisible and no other bus master should be given
access to the bus. This signal is used by the bus arbiter.
This signal is driven by the active bus master.

BnRES
Reset

The bus reset signal is active LOW and is used to reset the system and
the bus. This is the only active LOW signal.

AMBA Signals

ARM IHI 0011A © Copyright ARM Limited 1999. All rights reserved. 2-7

BPROT[1:0]
Protection control

The protection control signals provide additional information about a
bus access and are primarily intended for use by a bus decoder when
acting as a basic protection unit. The signals indicate if the transfer is
an opcode fetch or data access, as well as if the transfer is a privileged
mode access or user mode access. The signals are driven by the active
bus master and have the same timing as the address bus.

BSIZE[1:0]
Transfer size

The transfer size signals indicate the size of the transfer, which may be
byte, halfword or word.
The signals are driven by the active bus master and have the same
timing as the address bus.

BTRAN[1:0]
Transfer type

These signals indicate the type of the next transaction, which may be
ADDRESS-ONLY, NONSEQUENTIAL or SEQUENTIAL. These
signals are driven by a bus master when the appropriate AGNTx signal
is asserted.

BWAIT
Wait response

This signal is driven by the selected bus slave to indicate if the current
transfer may complete. If BWAIT is HIGH a further bus cycle is
required, if BWAIT is LOW then the transfer may complete in the
current bus cycle.
When no slave is selected this signal is driven by the bus decoder.

BWRITE
Transfer direction

When HIGH this signal indicates a write transfer and when LOW a
read transfer. This signal is driven by the active bus master and has the
same timing as the address bus.

DSELx
Slave select

A signal from the bus decoder to a bus slave x which indicates that the
slave device is selected and a data transfer is required. There is a
DSELx signal for each ASB bus slave.

Table 2-3 AMBA ASB signals (continued)

Name Description

AMBA Signals

2-8 © Copyright ARM Limited 1999. All rights reserved. ARM IHI 0011A

2.4 AMBA APB signal list

All AMBA APB signals use the single letter P prefix. Some APB signals, such as the
clock, may be connected directly to the system bus equivalent signal.

Table 2-4 shows the list of AMBA APB signal names, along with a description of how
each of the signals is used.

Table 2-4 AMBA APB signals

Name Description

PCLK
Bus clock

The rising edge of PCLK is used to time all transfers on the
APB.

PRESETn
APB reset

The APB bus reset signal is active LOW and this signal will
normally be connected directly to the system bus reset signal.

PADDR[31:0]
APB address bus

This is the APB address bus, which may be up to 32-bits wide
and is driven by the peripheral bus bridge unit.

PSELx
APB select

A signal from the secondary decoder, within the peripheral bus
bridge unit, to each peripheral bus slave x. This signal indicates
that the slave device is selected and a data transfer is required.
There is a PSELx signal for each bus slave.

PENABLE
APB strobe

This strobe signal is used to time all accesses on the peripheral
bus. The enable signal is used to indicate the second cycle of an
APB transfer. The rising edge of PENABLE occurs in the middle
of the APB transfer.

PWRITE
APB transfer direction

When HIGH this signal indicates an APB write access and when
LOW a read access.

PRDATA
APB read data bus

The read data bus is driven by the selected slave during read
cycles (when PWRITE is LOW). The read data bus can be up to
32-bits wide.

PWDATA
APB write data bus

The write data bus is driven by the peripheral bus bridge unit
during write cycles (when PWRITE is HIGH). The write data
bus can be up to 32-bits wide.

ARM IHI 0011A © Copyright ARM Limited 1999. All rights reserved. 3-1

Chapter 3
AMBA AHB

This chapter describes the Advanced High-performance Bus (AHB) architecture. It
contains the following sections:

• About the AMBA AHB on page 3-3

• Bus interconnection on page 3-4

• Overview of AMBA AHB operation on page 3-5

• Basic transfer on page 3-6

• Transfer type on page 3-9

• Burst operation on page 3-11

• Control signals on page 3-17

• Address decoding on page 3-19

• Slave transfer responses on page 3-20

• Data buses on page 3-25

• Arbitration on page 3-28

• Split transfers on page 3-35

• Reset on page 3-40

• About the AHB data bus width on page 3-41

• Implementing a narrow slave on a wider bus on page 3-42

• Implementing a wide slave on a narrow bus on page 3-43

AMBA AHB

3-2 © Copyright ARM Limited 1999. All rights reserved. ARM IHI 0011A

• About the AHB AMBA components on page 3-44

• AHB bus slave on page 3-45

• AHB bus master on page 3-49

• AHB decoder on page 3-57

• AHB arbiter on page 3-53.

AMBA AHB

ARM IHI 0011A © Copyright ARM Limited 1999. All rights reserved. 3-3

3.1 About the AMBA AHB

AHB is a new generation of AMBA bus which is intended to address the requirements
of high-performance synthesizable designs. AMBA AHB is a new level of bus which
sits above the APB and implements the features required for high-performance, high
clock frequency systems including:

• burst transfers

• split transactions

• single cycle bus master handover

• single clock edge operation

• non-tristate implementation

• wider data bus configurations (64/128 bits).

3.1.1 A typical AMBA AHB-based microcontroller

An AMBA-based microcontroller typically consists of a high-performance system
backbone bus, able to sustain the external memory bandwidth, on which the CPU and
other Direct Memory Access (DMA) devices reside, plus a bridge to a narrower APB
bus on which the lower bandwidth peripheral devices are located. Figure 3-1 shows
both AHB and APB in a typical AMBA system.

Figure 3-1 A typical AMBA AHB-based system

AMBA Advanced High-performance Bus (AHB)
* High performance
* Pipelined operation
* Burst transfers
* Multiple bus masters
* Split transactions

AMBA Advanced Peripheral Bus (APB)
* Low power
* Latched address and control
* Simple interface
* Suitable for many peripherals

Timer

High-bandwidth
on-chip RAM

B
R
I
D
G
E

High-performance
ARM processor

High-bandwidth
Memory Interface

AHB APB

PIO

UART

Keypad

AHB to APB Bridge

DMA bus
master

AMBA AHB

3-4 © Copyright ARM Limited 1999. All rights reserved. ARM IHI 0011A

3.2 Bus interconnection

The AMBA AHB bus protocol is designed to be used with a central multiplexor
interconnection scheme. Using this scheme all bus masters drive out the address and
control signals indicating the transfer they wish to perform and the arbiter determines
which master has its address and control signals routed to all of the slaves. A central
decoder is also required to control the read data and response signal multiplexor, which
selects the appropriate signals from the slave that is involved in the transfer.

Figure 3-2 illustrates the structure required to implement an AMBA AHB design with
three masters and four slaves.

Figure 3-2 Multiplexor interconnection

Master
1

Master
2

Master
3

Address and
control mux

Slave
1

Slave
3

Slave
2

Slave
4

Write data mux

Arbiter

Decoder

Read data mux

HADDR

HWDATA

HRDATA

HADDR

HWDATA

HRDATA

HADDR

HWDATA

HRDATA

HADDR

HWDATA

HRDATA

HADDR

HWDATA

HRDATA

HADDR

HWDATA

HRDATA

HADDR

HWDATA

HRDATA

AMBA AHB

ARM IHI 0011A © Copyright ARM Limited 1999. All rights reserved. 3-5

3.3 Overview of AMBA AHB operation

Before an AMBA AHB transfer can commence the bus master must be granted access
to the bus. This process is started by the master asserting a request signal to the arbiter.
Then the arbiter indicates when the master will be granted use of the bus.

A granted bus master starts an AMBA AHB transfer by driving the address and control
signals. These signals provide information on the address, direction and width of the
transfer, as well as an indication if the transfer forms part of a burst. Two different forms
of burst transfers are allowed:

• incrementing bursts, which do not wrap at address boundaries

• wrapping bursts, which wrap at particular address boundaries.

A write data bus is used to move data from the master to a slave, while a read data bus
is used to move data from a slave to the master.

Every transfer consists of:

• an address and control cycle

• one or more cycles for the data.

The address cannot be extended and therefore all slaves must sample the address during
this time. The data, however, can be extended using the HREADY signal. When LOW
this signal causes wait states to be inserted into the transfer and allows extra time for the
slave to provide or sample data.

During a transfer the slave shows the status using the response signals, HRESP[1:0]:

OKAY The OKAY response is used to indicate that the transfer is
progressing normally and when HREADY goes HIGH this shows
the transfer has completed successfully.

ERROR The ERROR response indicates that a transfer error has occurred
and the transfer has been unsuccessful.

RETRY and SPLIT Both the RETRY and SPLIT transfer responses indicate that the
transfer cannot complete immediately, but the bus master should
continue to attempt the transfer.

In normal operation a master is allowed to complete all the transfers in a particular burst
before the arbiter grants another master access to the bus. However, in order to avoid
excessive arbitration latencies it is possible for the arbiter to break up a burst and in such
cases the master must re-arbitrate for the bus in order to complete the remaining
transfers in the burst.

AMBA AHB

3-6 © Copyright ARM Limited 1999. All rights reserved. ARM IHI 0011A

3.4 Basic transfer

An AHB transfer consists of two distinct sections:

• The address phase, which lasts only a single cycle.

• The data phase, which may require several cycles. This is achieved using the
HREADY signal.

Figure 3-3 shows the simplest transfer, one with no wait states.

Figure 3-3 Simple transfer

In a simple transfer with no wait states:

• The master drives the address and control signals onto the bus after the rising
edge of HCLK.

• The slave then samples the address and control information on the next rising
edge of the clock.

Address phase Data phase

HCLK

Control

HADDR[31:0]

HWDATA[31:0]

HREADY

A

Control

Data
(A)

HRDATA[31:0]
Data
(A)

AMBA AHB

ARM IHI 0011A © Copyright ARM Limited 1999. All rights reserved. 3-7

• After the slave has sampled the address and control it can start to drive the
appropriate response and this is sampled by the bus master on the third rising
edge of the clock.

This simple example demonstrates how the address and data phases of the transfer occur
during different clock periods. In fact, the address phase of any transfer occurs during
the data phase of the previous transfer. This overlapping of address and data is
fundamental to the pipelined nature of the bus and allows for high performance
operation, while still providing adequate time for a slave to provide the response to a
transfer.

A slave may insert wait states into any transfer, as shown in Figure 3-4, which extends
the transfer allowing additional time for completion.

Figure 3-4 Transfer with wait states

Note

For write operations the bus master will hold the data stable throughout the extended
cycles.

For read transfers the slave does not have to provide valid data until the transfer is about
to complete.

HCLK

Control

HADDR[31:0]

HWDATA[31:0]

HREADY

HRDATA[31:0]

Address phase Data phase

A

Control

Data
(A)

Data
(A)

AMBA AHB

3-8 © Copyright ARM Limited 1999. All rights reserved. ARM IHI 0011A

When a transfer is extended in this way it will have the side-effect of extending the
address phase of the following transfer. This is illustrated in Figure 3-5 which shows
three transfers to unrelated addresses, A, B & C.

Figure 3-5 Multiple transfers

In Figure 3-5:

• the transfers to addresses A and C are both zero wait state

• the transfer to address B is one wait state

• extending the data phase of the transfer to address B has the effect of extending
the address phase of the transfer to address C.

HCLK

Control

HADDR[31:0]

HWDATA[31:0]

HREADY

HRDATA[31:0]

A

Control
(A)

Control
(B)

Control
(C)

Data
(A)

Data
(B)

Data
(C)

Data
(A)

Data
(B)

Data
(C)

B C

AMBA AHB

ARM IHI 0011A © Copyright ARM Limited 1999. All rights reserved. 3-9

3.5 Transfer type

Every transfer can be classified into one of four different types, as indicated by the
HTRANS[1:0] signals as shown in Table 3-1.

Table 3-1 Transfer type encoding

HTRANS[1:0] Type Description

00 IDLE Indicates that no data transfer is required. The IDLE transfer type is used when a bus
master is granted the bus, but does not wish to perform a data transfer.
Slaves must always provide a zero wait state OKAY response to IDLE transfers and the
transfer should be ignored by the slave.

01 BUSY The BUSY transfer type allows bus masters to insert IDLE cycles in the middle of bursts
of transfers. This transfer type indicates that the bus master is continuing with a burst of
transfers, but the next transfer cannot take place immediately. When a master uses the
BUSY transfer type the address and control signals must reflect the next transfer in the
burst.
The transfer should be ignored by the slave. Slaves must always provide a zero wait state
OKAY response, in the same way that they respond to IDLE transfers.

10 NONSEQ Indicates the first transfer of a burst or a single transfer. The address and control signals
are unrelated to the previous transfer.
Single transfers on the bus are treated as bursts of one and therefore the transfer type is
NONSEQUENTIAL.

11 SEQ The remaining transfers in a burst are SEQUENTIAL and the address is related to the
previous transfer. The control information is identical to the previous transfer. The
address is equal to the address of the previous transfer plus the size (in bytes). In the
case of a wrapping burst the address of the transfer wraps at the address boundary equal
to the size (in bytes) multiplied by the number of beats in the transfer (either 4, 8 or 16).

AMBA AHB

3-10 © Copyright ARM Limited 1999. All rights reserved. ARM IHI 0011A

Figure 3-6 shows a number of different transfer types being used.

Figure 3-6 Transfer type examples

In Figure 3-6:

• The first transfer is the start of a burst and therefore is NONSEQUENTIAL.

• The master is unable to perform the second transfer of the burst immediately and
therefore the master uses a BUSY transfer to delay the start of the next transfer.
In this example the master only requires one cycle before it is ready to start the
next transfer in the burst, which completes with no wait states.

• The master performs the third transfer of the burst immediately, but this time the
slave is unable to complete and uses HREADY to insert a single wait state.

• The final transfer of the burst completes with zero wait states.

T1 T2 T3 T4 T5 T6

HCLK

NONSEQHTRANS[1:0] BUSY SEQ

0x20 0x24 0x28 0x2C

INCR

Data
(0x20)

Data
(0x20)

HADDR[31:0]

HBURST[2:0]

HWDATA[31:0]

HREADY

HRDATA[31:0]

0x24

SEQ SEQ

Data
(0x24)

Data
(0x28)

Data
(0x24)

Data
(0x2C)

Data
(0x2C)

Data
(0x28)

T7 T8

AMBA AHB

ARM IHI 0011A © Copyright ARM Limited 1999. All rights reserved. 3-11

3.6 Burst operation

Four, eight and sixteen-beat bursts are defined in the AMBA AHB protocol, as well as
undefined-length bursts and single transfers. Both incrementing and wrapping bursts
are supported in the protocol:

• Incrementing bursts access sequential locations and the address of each transfer
in the burst is just an increment of the previous address.

• For wrapping bursts, if the start address of the transfer is not aligned to the total
number of bytes in the burst (size x beats) then the address of the transfers in the
burst will wrap when the boundary is reached. For example, a four-beat
wrapping burst of word (4-byte) accesses will wrap at 16-byte boundaries.
Therefore, if the start address of the transfer is 0x34, then it consists of four
transfers to addresses 0x34, 0x38, 0x3C and 0x30.

Burst information is provided using HBURST[2:0] and the eight possible types are
defined in Table 3-2.

Bursts must not cross a 1kB address boundary. Therefore it is important that masters do
not attempt to start a fixed-length incrementing burst which would cause this boundary
to be crossed.

It is acceptable to perform single transfers using an unspecified-length incrementing
burst which only has a burst of length one.

Table 3-2 Burst signal encoding

HBURST[2:0] Type Description

000 SINGLE Single transfer

001 INCR Incrementing burst of unspecified length

010 WRAP4 4-beat wrapping burst

011 INCR4 4-beat incrementing burst

100 WRAP8 8-beat wrapping burst

101 INCR8 8-beat incrementing burst

110 WRAP16 16-beat wrapping burst

111 INCR16 16-beat incrementing burst

AMBA AHB

3-12 © Copyright ARM Limited 1999. All rights reserved. ARM IHI 0011A

An incrementing burst can be of any length, but the upper limit is set by the fact that the
address must not cross a 1kB boundary

Note

The burst size indicates the number of beats in the burst, not the number of bytes
transferred. The total amount of data transferred in a burst is calculated by multiplying
the number of beats by the amount of data in each beat, as indicated by HSIZE[2:0].

All transfers within a burst must be aligned to the address boundary equal to the size of
the transfer. For example, word transfers must be aligned to word address boundaries
(that is A[1:0] = 00), halfword transfers must be aligned to halfword address boundaries
(that is A[0] = 0).

3.6.1 Early burst termination

There are certain circumstances when a burst will not be allowed to complete and
therefore it is important that any slave design which makes use of the burst information
can take the correct course of action if the burst is terminated early. The slave can
determine when a burst has terminated early by monitoring the HTRANS signals and
ensuring that after the start of the burst every transfer is labelled as SEQUENTIAL or
BUSY. If a NONSEQUENTIAL or IDLE transfer occurs then this indicates that a new
burst has started and therefore the previous one must have been terminated.

If a bus master cannot complete a burst because it loses ownership of the bus then it
must rebuild the burst appropriately when it next gains access to the bus. For example,
if a master has only completed one beat of a four-beat burst then it must use an
undefined-length burst to perform the remaining three transfers.

Examples are shown on the following pages:

• Figure 3-7 shows a Four-beat wrapping burst on page 3-13

• Figure 3-8 shows a Four-beat incrementing burst on page 3-14

• Figure 3-9 shows an Eight-beat wrapping burst on page 3-15

• Figure 3-10 shows an Eight-beat incrementing burst on page 3-15

• Figure 3-11 shows Undefined-length bursts on page 3-16.

AMBA AHB

ARM IHI 0011A © Copyright ARM Limited 1999. All rights reserved. 3-13

The example in Figure 3-7 shows a four-beat wrapping burst with a wait state added for
the first transfer.

Figure 3-7 Four-beat wrapping burst

As the burst is a four-beat burst of word transfers the address will wrap at 16-byte
boundaries, hence the transfer to address 0x3C is followed by a transfer to address 0x30.
The only difference with the incrementing burst, shown in Figure 3-8 on page 3-14, is
that the addresses continue past the 16-byte boundary.

T1 T2 T3 T4 T5 T6

HCLK

NONSEQHTRANS[1:0] SEQ

WRAP4

HADDR[31:0]

HBURST[2:0]

HWDATA[31:0]

HREADY

HRDATA[31:0]

SEQ

Data
(0x3C)

Data
(0x3C)

HWRITE
HSIZE[2:0]

HPROT[3:0]

SEQ

0x38 0x3C 0x30 0x34

Control for burst
SIZE = Word

Data
(0x30)

Data
(0x34)

Data
(0x38)

Data
(0x38)

Data
(0x30)

Data
(0x34)

T7

AMBA AHB

3-14 © Copyright ARM Limited 1999. All rights reserved. ARM IHI 0011A

Figure 3-8 Four-beat incrementing burst

T1 T2 T3 T4 T5 T6

HCLK

NONSEQHTRANS[1:0] SEQ

INCR4

HADDR[31:0]

HBURST[2:0]

HWDATA[31:0]

HREADY

HRDATA[31:0]

SEQ

Data
(0x3C)

Data
(0x3C)

HWRITE
HSIZE[2:0]

HPROT[3:0]

SEQ

0x38 0x3C 0x40 0x44

Control for burst
SIZE = Word

Data
(0x40)

Data
(0x44)

Data
(0x38)

Data
(0x38)

Data
(0x40)

Data
(0x44)

T7

AMBA AHB

ARM IHI 0011A © Copyright ARM Limited 1999. All rights reserved. 3-15

The example in Figure 3-9 is an eight-beat burst of word transfers.

Figure 3-9 Eight-beat wrapping burst

The address will wrap at 32-byte boundaries and therefore address 0x3C is followed by
0x20.

The burst in Figure 3-10 uses halfword transfers, so the addresses increase by 2 and the
burst is incrementing so the addresses continue to increment past the 16-byte boundary.

Figure 3-10 Eight-beat incrementing burst

T1 T2 T3 T4 T5 T6

HCLK

NONSEQHTRANS[1:0]

WRAP8

HADDR[31:0]

HBURST[2:0]

HWDATA[31:0]

HREADY

HRDATA[31:0]

SEQ

Data
(0x3C)

Data
(0x3C)

HWRITE
HSIZE[2:0]

HPROT[3:0]

SEQ

0x34 0x20 0x24

Control for burst
SIZE = Word

Data
(0x20)

Data
(0x24)

Data
(0x38)

Data
(0x20)

Data
(0x24)

SEQ SEQ

0x38 0x3C

Data
(0x34)

Data
(0x38)

Data
(0x34)

SEQSEQ SEQ

0x300x28 0x2C

Data
(0x28)

Data
(0x2C)

Data
(0x30)

Data
(0x28)

Data
(0x2C)

Data
(0x30)

T7 T8 T9 T10

T1 T2 T3 T4 T5 T6

HCLK

NONSEQHTRANS[1:0]

INCR8

HADDR[31:0]

HBURST[2:0]

HWDATA[31:0]

HREADY

HRDATA[31:0]

SEQ

Data
(0x38)

Data
(0x38)

HWRITE
HSIZE[2:0]

HPROT[3:0]

SEQ

0x34 0x3A 0x3C

Control for burst
SIZE = Halfword

Data
(0x3A)

Data
(0x3C)

Data
(0x36)

Data
(0x3A)

Data
(0x3C)

SEQ SEQ

0x36 0x38

Data
(0x34)

Data
(0x36)

Data
(0x34)

SEQ SEQSEQ

Data
(0x3E)

Data
(0x40)

Data
(0x42)

Data
(0x3E)

Data
(0x40)

Data
(0x42)

T7 T8 T9 T10

0x3E 0x40 0x42

AMBA AHB

3-16 © Copyright ARM Limited 1999. All rights reserved. ARM IHI 0011A

The final example in Figure 3-11 shows incrementing bursts of undefined length.

Figure 3-11 Undefined-length bursts

Figure 3-11 shows two bursts:

• Two halfword transfers starting at address 0x20. The halfword transfer addresses
increment by 2.

• Three word transfers starting at address 0x5C. The word transfer addresses
increment by 4.

T1 T2 T3 T4 T5 T6 T7 T8

HCLK

NONSEQHTRANS[1:0] SEQ NONSEQ SEQ SEQ

0x20 0x22 0x5C 0x60 0x64

INCR INCR

Control for burst
SIZE = Halfword

Control for burst
SIZE = Word

Data
(0x20)

Data
(0x5C)

Data
0x22

Data
(0x60)

Data
(0x64)

Data
(0x20)

Data
(0x22)

Data
(0x5C)

Data
(0x60)

Data
(0x64)

HADDR[31:0]

HBURST[2:0]

HWRITE
HSIZE[2:0]

HPROT[3:0]

HWDATA[31:0]

HREADY

HRDATA[31:0]

AMBA AHB

ARM IHI 0011A © Copyright ARM Limited 1999. All rights reserved. 3-17

3.7 Control signals

As well as the transfer type and burst type each transfer will have a number of control
signals that provide additional information about the transfer. These control signals
have exactly the same timing as the address bus. However, they must remain constant
throughout a burst of transfers.

3.7.1 Transfer direction

When HWRITE is HIGH, this signal indicates a write transfer and the master will
broadcast data on the write data bus, HWDATA[31:0]. When LOW a read transfer will
be performed and the slave must generate the data on the read data bus
HRDATA[31:0].

3.7.2 Transfer size

HSIZE[2:0] indicates the size of the transfer, as shown in Table 3-3.

The size is used in conjunction with the HBURST[2:0] signals to determine the address
boundary for wrapping bursts.

3.7.3 Protection control

The protection control signals, HPROT[3:0], provide additional information about a
bus access and are primarily intended for use by any module that wishes to implement
some level of protection (see Table 3-4).

Table 3-3 Size encoding

HSIZE[2] HSIZE[1] HSIZE[0] Size Description

0 0 0 8 bits Byte

0 0 1 16 bits Halfword

0 1 0 32 bits Word

0 1 1 64 bits -

1 0 0 128 bits 4-word line

1 0 1 256 bits 8-word line

1 1 0 512 bits -

1 1 1 1024 bits -

AMBA AHB

3-18 © Copyright ARM Limited 1999. All rights reserved. ARM IHI 0011A

The signals indicate if the transfer is:

• an opcode fetch or data access

• a privileged mode access or user mode access.

For bus masters with a memory management unit these signals also indicate whether
the current access is cacheable or bufferable.

Not all bus masters will be capable of generating accurate protection information,
therefore it is recommended that slaves do not use the HPROT signals unless strictly
necessary.

Table 3-4 Protection signal encodings

HPROT[3]
cacheable

HPROT[2]
bufferable

HPROT[1]
privileged

HPROT[0]
data/opcode

Description

- - - 0 Opcode fetch

- - - 1 Data access

- - 0 - User access

- - 1 - Privileged access

- 0 - - Not bufferable

- 1 - - Bufferable

0 - - - Not cacheable

1 - - - Cacheable

AMBA AHB

ARM IHI 0011A © Copyright ARM Limited 1999. All rights reserved. 3-19

3.8 Address decoding

A central address decoder is used to provide a select signal, HSELx, for each slave on
the bus. The select signal is a combinatorial decode of the high-order address signals,
and simple address decoding schemes are encouraged to avoid complex decode logic
and to ensure high-speed operation.

A slave must only sample the address and control signals and HSELx when HREADY
is HIGH, indicating that the current transfer is completing. Under certain circumstances
it is possible that HSELx will be asserted when HREADY is LOW, but the selected
slave will have changed by the time the current transfer completes.

The minimum address space that can be allocated to a single slave is 1kB. All bus
masters are designed such that they will not perform incrementing transfers over a 1kB
boundary, thus ensuring that a burst never crosses an address decode boundary.

In the case where a system design does not contain a completely filled memory map an
additional default slave should be implemented to provide a response when any of the
nonexistent address locations are accessed. If a NONSEQUENTIAL or SEQUENTIAL
transfer is attempted to a nonexistent address location then the default slave should
provide an ERROR response. IDLE or BUSY transfers to nonexistent locations should
result in a zero wait state OKAY response. Typically the default slave functionality will
be implemented as part of the central address decoder.

Figure 3-12 shows a typical address decoding system and the slave select signals.

Figure 3-12 Slave select signals

Master
1

Master
2

Address and
control mux

Slave
1

Slave
3

Slave
2

Decoder

HADDR_M1[31:0]

HADDR_M2[31:0]

HSEL_S3
HSEL_S2
HSEL_S1

HADDR to all slaves

AMBA AHB

3-20 © Copyright ARM Limited 1999. All rights reserved. ARM IHI 0011A

3.9 Slave transfer responses

After a master has started a transfer, the slave then determines how the transfer should
progress. No provision is made within the AHB specification for a bus master to cancel
a transfer once it has commenced.

Whenever a slave is accessed it must provide a response which indicates the status of
the transfer. The HREADY signal is used to extend the transfer and this works in
combination with the response signals, HRESP[1:0], which provide the status of the
transfer.

The slave can complete the transfer in a number of ways. It can:

• complete the transfer immediately

• insert one or more wait states to allow time to complete the transfer

• signal an error to indicate that the transfer has failed

• delay the completion of the transfer, but allow the master and slave to back off
the bus, leaving it available for other transfers.

3.9.1 Transfer done

The HREADY signal is used to extend the data portion of an AHB transfer. When
LOW the HREADY signal indicates the transfer is to be extended and when HIGH
indicates that the transfer can complete.

Note

Every slave must have a predetermined maximum number of wait states that it will
insert before it backs off the bus, in order to allow the calculation of the latency of
accessing the bus. It is recommended, but not mandatory, that slaves do not insert more
than 16 wait states to prevent any single access locking the bus for a large number of
clock cycles.

3.9.2 Transfer response

A typical slave will use the HREADY signal to insert the appropriate number of wait
states into the transfer and then the transfer will complete with HREADY HIGH and
an OKAY response, which indicates the successful completion of the transfer.

The ERROR response is used by a slave to indicate some form of error condition with
the associated transfer. Typically this is used for a protection error, such as an attempt
to write to a read-only memory location.

AMBA AHB

ARM IHI 0011A © Copyright ARM Limited 1999. All rights reserved. 3-21

The SPLIT and RETRY response combinations allow slaves to delay the completion of
a transfer, but free up the bus for use by other masters. These response combinations are
usually only required by slaves that have a high access latency and can make use of
these response codes to ensure that other masters are not prevented from accessing the
bus for long periods of time.

A full description of the SPLIT and RETRY operations can be found in Split and retry
on page 3-24.

The encoding of HRESP[1:0], the transfer response signals, and a description of each
response are shown in Table 3-5.

When it is necessary for a slave to insert a number of wait states prior to deciding what
response will be given then it must drive the response to OKAY.

Table 3-5 Response encoding

HRESP[1] HRESP[0] Response Description

0 0 OKAY When HREADY is HIGH this shows the
transfer has completed successfully.
The OKAY response is also used for any
additional cycles that are inserted, with
HREADY LOW, prior to giving one of the
three other responses.

0 1 ERROR This response shows an error has occurred.
The error condition should be signalled to
the bus master so that it is aware the transfer
has been unsuccessful.
A two-cycle response is required for an error
condition.

1 0 RETRY The RETRY response shows the transfer has
not yet completed, so the bus master should
retry the transfer. The master should
continue to retry the transfer until it
completes.
A two-cycle RETRY response is required.

1 1 SPLIT The transfer has not yet completed
successfully. The bus master must retry the
transfer when it is next granted access to the
bus. The slave will request access to the bus
on behalf of the master when the transfer can
complete.
A two-cycle SPLIT response is required.

AMBA AHB

3-22 © Copyright ARM Limited 1999. All rights reserved. ARM IHI 0011A

3.9.3 Two-cycle response

Only an OKAY response can be given in a single cycle. The ERROR, SPLIT and
RETRY responses require at least two cycles. To complete with any of these responses
then in the penultimate (one before last) cycle the slave drives HRESP[1:0] to indicate
ERROR, RETRY or SPLIT while driving HREADY LOW to extend the transfer for an
extra cycle. In the final cycle HREADY is driven HIGH to end the transfer, while
HRESP[1:0] remains driven to indicate ERROR, RETRY or SPLIT.

If the slave needs more than two cycles to provide the ERROR, SPLIT or RETRY
response then additional wait states may be inserted at the start of the transfer. During
this time the HREADY signal will be LOW and the response must be set to OKAY.

The two-cycle response is required because of the pipelined nature of the bus. By the
time a slave starts to issue either an ERROR, SPLIT or RETRY response then the
address for the following transfer has already been broadcast onto the bus. The two-
cycle response allows sufficient time for the master to cancel this address and drive
HTRANS[1:0] to IDLE before the start of the next transfer.

For the SPLIT and RETRY response the following transfer must be cancelled because
it must not take place before the current transfer has completed. However, for the
ERROR response, where the current transfer is not repeated, completion of the
following transfer is optional.

Figure 3-13 shows an example of a RETRY operation.

Figure 3-13 Transfer with retry response

T1 T2 T3 T4 T5

HCLK

HTRANS[1:0]

HWDATA[31:0]

HREADY

NONSEQ

Data
(A)

HRESP[1:0] RETRY RETRY OKAY

SEQ IDLE NONSEQ

HADDR[31:0] A A + 4 A

AMBA AHB

ARM IHI 0011A © Copyright ARM Limited 1999. All rights reserved. 3-23

The following events are illustrated:

• The master starts with a transfer to address A.

• Before the response is received for this transfer the master moves the address on
to A + 4.

• The slave at address A is unable to complete the transfer immediately and
therefore it issues a RETRY response. This response indicates to the master that
the transfer at address A is unable to complete and so the transfer at address A +
4 is cancelled and replaced by an IDLE transfer.

Figure 3-14 shows a transfer where the slave requires one cycle to decide on the
response it is going to give (during which time HRESP indicates OKAY) and then the
slave ends the transfer with a two-cycle ERROR response.

Figure 3-14 Error response

3.9.4 Error response

If a slave provides an ERROR response then the master may choose to cancel the
remaining transfers in the burst. However, this is not a strict requirement and it is also
acceptable for the master to continue the remaining transfers in the burst.

HCLK

Control

HADDR[31:0]

HWDATA[31:0]

HREADY

HRDATA[31:0]

A

Control

Data
(A)

HRESP[31:0] OKAY ERROR ERROR

AMBA AHB

3-24 © Copyright ARM Limited 1999. All rights reserved. ARM IHI 0011A

3.9.5 Split and retry

The SPLIT and RETRY responses provide a mechanism for slaves to release the bus
when they are unable to supply data for a transfer immediately. Both mechanisms allow
the transfer to finish on the bus and therefore allow a higher-priority master to get access
to the bus.

The difference between SPLIT and RETRY is the way the arbiter allocates the bus after
a SPLIT or a RETRY has occurred:

• For RETRY the arbiter will continue to use the normal priority scheme and
therefore only masters having a higher priority will gain access to the bus.

• For a SPLIT transfer the arbiter will adjust the priority scheme so that any other
master requesting the bus will get access, even if it is a lower priority. In order
for a SPLIT transfer to complete the arbiter must be informed when the slave has
the data available.

The SPLIT transfer requires extra complexity in both the slave and the arbiter, but has
the advantage that it completely frees the bus for use by other masters, whereas the
RETRY case will only allow higher priority masters onto the bus.

A bus master should treat SPLIT and RETRY in the same manner. It should continue
to request the bus and attempt the transfer until it has either completed successfully or
been terminated with an ERROR response.

AMBA AHB

ARM IHI 0011A © Copyright ARM Limited 1999. All rights reserved. 3-25

3.10 Data buses

In order to allow implementation of an AHB system without the use of tristate drivers
separate read and write data buses are required. The minimum data bus width is
specified as 32 bits, but the bus width can be increased as described in About the AHB
data bus width on page 3-41.

3.10.1 HWDATA[31:0]

The write data bus is driven by the bus master during write transfers. If the transfer is
extended then the bus master must hold the data valid until the transfer completes, as
indicated by HREADY HIGH.

All transfers must be aligned to the address boundary equal to the size of the transfer.
For example, word transfers must be aligned to word address boundaries (that is
A[1:0] = 00), halfword transfers must be aligned to halfword address boundaries
(that is A[0] = 0).

For transfers that are narrower than the width of the bus, for example a 16-bit transfer
on a 32-bit bus, then the bus master only has to drive the appropriate byte lanes. The
slave is responsible for selecting the write data from the correct byte lanes. Table 3-6
on page 3-26 and Table 3-7 on page 3-26 show which byte lanes are active for a little-
endian and big-endian system respectively. If required, this information can be
extended for wider data bus implementations. Burst transfers which have a transfer size
less than the width of the data bus will have different active byte lanes for each beat of
the burst.

The active byte lane is dependent on the endianness of the system, but AHB does not
specify the required endianness. Therefore, it is important that all masters and slaves on
the bus are of the same endianness.

3.10.2 HRDATA[31:0]

The read data bus is driven by the appropriate slave during read transfers. If the slave
extends the read transfer by holding HREADY LOW then the slave only needs to
provide valid data at the end of the final cycle of the transfer, as indicated by HREADY
HIGH.

For transfers that are narrower than the width of the bus the slave only needs to provide
valid data on the active byte lanes, as indicated in Table 3-6 and Table 3-7. The bus
master is responsible for selecting the data from the correct byte lanes.

AMBA AHB

3-26 © Copyright ARM Limited 1999. All rights reserved. ARM IHI 0011A

A slave only has to provide valid data when a transfer completes with an OKAY
response. SPLIT, RETRY and ERROR responses do not require valid read data.

3.10.3 Endianness

In order for the system to function correctly it is essential that all modules are of the
same endianness and also that any data routing or bridges are of the same endianness.

Table 3-6 Active byte lanes for a 32-bit little-endian data bus

Transfer
size

Address
offset

DATA
[31:24]

DATA
[23:16]

DATA
[15:8]

DATA
[7:0]

Word 0 ä ä ä ä

Halfword 0 - - ä ä

Halfword 2 ä ä - -

Byte 0 - - - ä

Byte 1 - - ä -

Byte 2 - ä - -

Byte 3 ä - - -

Table 3-7 Active byte lanes for a 32-bit big-endian data bus

Transfer
size

Address
offset

DATA
[31:24]

DATA
[23:16]

DATA
[15:8]

DATA
[7:0]

Word 0 ä ä ä ä

Halfword 0 ä ä - -

Halfword 2 - - ä ä

Byte 0 ä - - -

Byte 1 - ä - -

Byte 2 - - ä -

Byte 3 - - - ä

AMBA AHB

ARM IHI 0011A © Copyright ARM Limited 1999. All rights reserved. 3-27

Dynamic endianness is not supported, because in the majority of embedded systems,
this would lead to a significant silicon overhead that is redundant.

For module designers it is recommended that only modules which will be used in a wide
variety of applications should be made bi-endian, with either a configuration pin or
internal control bit to select the endianness. For more application-specific blocks, fixing
the endianness to either little-endian or big-endian will result in a smaller, lower power,
higher performance interface.

AMBA AHB

3-28 © Copyright ARM Limited 1999. All rights reserved. ARM IHI 0011A

3.11 Arbitration

The arbitration mechanism is used to ensure that only one master has access to the bus
at any one time. The arbiter performs this function by observing a number of different
requests to use the bus and deciding which is currently the highest priority master
requesting the bus. The arbiter also receives requests from slaves that wish to complete
SPLIT transfers.

Any slaves which are not capable of performing SPLIT transfers do not need to be
aware of the arbitration process, except that they need to observe the fact that a burst of
transfers may not complete if the ownership of the bus is changed.

3.11.1 Signal description

A brief description of each of the arbitration signals is given below:

HBUSREQx The bus request signal is used by a bus master to request access to
the bus. Each bus master has its own HBUSREQx signal to the
arbiter and there can be up to 16 separate bus masters in any
system.

HLOCKx The lock signal is asserted by a master at the same time as the bus
request signal. This indicates to the arbiter that the master is
performing a number of indivisible transfers and the arbiter must
not grant any other bus master access to the bus once the first
transfer of the locked transfers has commenced. HLOCKx must
be asserted at least a cycle before the address to which it refers, in
order to prevent the arbiter from changing the grant signals.

HGRANTx The grant signal is generated by the arbiter and indicates that the
appropriate master is currently the highest priority master
requesting the bus, taking into account locked transfers and
SPLIT transfers.

A master gains ownership of the address bus when HGRANTx is
HIGH and HREADY is HIGH at the rising edge of HCLK.

HMASTER[3:0] The arbiter indicates which master is currently granted the bus
using the HMASTER[3:0] signals and this can be used to control
the central address and control multiplexor. The master number is
also required by SPLIT-capable slaves so that they can indicate to
the arbiter which master is able to complete a SPLIT transaction.

HMASTLOCK The arbiter indicates that the current transfer is part of a locked
sequence by asserting the HMASTLOCK signal, which has the
same timing as the address and control signals.

AMBA AHB

ARM IHI 0011A © Copyright ARM Limited 1999. All rights reserved. 3-29

HSPLIT[15:0] The 16-bit Split Complete bus is used by a SPLIT-capable slave to
indicate which bus master can complete a SPLIT transaction. This
information is needed by the arbiter so that it can grant the master
access to the bus to complete the transfer.

Further information is provided in:

• Requesting bus access

• Granting bus access on page 3-30

• Early burst termination on page 3-33

• Locked transfers on page 3-34.

3.11.2 Requesting bus access

A bus master uses the HBUSREQx signal to request access to the bus and may request
the bus during any cycle. The arbiter will sample the request on the rising of the clock
and then use an internal priority algorithm to decide which master will be the next to
gain access to the bus.

Normally the arbiter will only grant a different bus master when a burst is completing.
However, if required, the arbiter can terminate a burst early to allow a higher priority
master access to the bus.

If the master requires locked accesses then it must also assert the HLOCKx signal to
indicate to the arbiter that no other masters should be granted the bus.

When a master is granted the bus and is performing a fixed length burst it is not
necessary to continue to request the bus in order to complete the burst. The arbiter
observes the progress of the burst and uses the HBURST[2:0] signals to determine how
many transfers are required by the master. If the master wishes to perform a second
burst after the one that is currently in progress then it should re-assert the request signal
during the burst.

If a master loses access to the bus in the middle of a burst then it must re-assert the
HBUSREQx request line to regain access to the bus.

For undefined length bursts the master should continue to assert the request until it has
started the last transfer. The arbiter cannot predict when to change the arbitration at the
end of an undefined length burst.

It is possible that a master can be granted the bus when it is not requesting it. This may
occur when no masters are requesting the bus and the arbiter grants access to a default
master. Therefore, it is important that if a master does not require access to the bus it
drives the transfer type HTRANS to indicate an IDLE transfer.

AMBA AHB

3-30 © Copyright ARM Limited 1999. All rights reserved. ARM IHI 0011A

3.11.3 Granting bus access

The arbiter indicates which bus master is currently the highest priority requesting the
bus by asserting the appropriate HGRANTx signal. When the current transfer
completes, as indicated by HREADY HIGH, then the master will become granted and
the arbiter will change the HMASTER[3:0] signals to indicate the bus master number.

Figure 3-15 shows the process when all transfers are zero wait state and the HREADY
signal is HIGH.

Figure 3-15 Granting access with no wait states

Figure 3-16 shows the effect of wait states on the bus handover.

Figure 3-16 Granting access with wait states

HCLK

HGRANTx

HADDR[31:0]

HWDATA[31:0]

HBUSREQx

HMASTER[3:0] #1

T1 T2 T3 T4 T5 T6

A A + 4

Data (A)

HCLK

HGRANTx

HADDR[31:0]

HWDATA[31:0]

HREADY

Master asserts
request

HBUSREQx

Master drives address after both
and are highHGRANT HREADY

Address sampled and data
starts when highHREADY

A number of cycles later
arbiter asserts grant

A A + 4

Data (A)

HMASTER[3:0] #1

T1 T2 T3 T4 T5 T6 T7 T8 T9

AMBA AHB

ARM IHI 0011A © Copyright ARM Limited 1999. All rights reserved. 3-31

The ownership of the data bus is delayed from the ownership of the address bus.
Whenever a transfer completes, as indicated by HREADY HIGH, then the master that
owns the address bus will be able to use the data bus and will continue to own the data
bus until the transfer completes. Figure 3-17 shows how the ownership of the data bus
is transferred when handover occurs between two bus masters.

Figure 3-17 Data bus ownership

HCLK

HADDR[31:0]

#1HMASTER

HGRANT_M1

HGRANT_M2

#2

HTRANS[31:0]

T1 T2 T3 T4 T5 T6 T7 T8 T9

HREADY

Data

(A + 4)HWDATA[31:0]

SEQ

A + 8 A + 12

SEQ

Data

(A + 8)

Data

(A + 12)

Data

(B)

NONSEQ

B B+4

SEQ

Master 1 owns Address and Control Master 2 owns Address and Control

Master 2 owns DataMaster 1 owns Data

AMBA AHB

3-32 © Copyright ARM Limited 1999. All rights reserved. ARM IHI 0011A

Figure 3-18 shows an example of how the arbiter can hand over the bus at the end of a
burst of transfers.

Figure 3-18 Handover after burst

The arbiter changes the HGRANTx signals when the penultimate (one before last)
address has been sampled. The new HGRANTx information will then be sampled at
the same point as the last address of the burst is sampled.

T1 T2 T3 T4 T5 T6

HCLK

SEQSEQ

A A + 12A + 8A + 4

Control for burst

HADDR[31:0]

HTRAN[1:0]

HBURST[2:0]

HWRITE

HSIZE[2:0]

HPROT[3:0]

HWDATA[31:0]

HREADY

Data

(A + 8)

T7

HGRANT_M2

NONSEQ SEQ

T8 T9

Data

(A + 12)

Data

(A + 4)

Data

(A)

HGRANT_M1

HBUSREQ_M2

HBUSREQ_M1

HMASTER[3:0] #1 #2

AMBA AHB

ARM IHI 0011A © Copyright ARM Limited 1999. All rights reserved. 3-33

Figure 3-19 shows how HGRANTx and HMASTER signals are used in a system.

Figure 3-19 Bus master grant signals

Note

Because a central multiplexor is used, each master can drive out the address of the
transfer it wishes to perform immediately and it does not need to wait until it is granted
the bus. The HGRANTx signal is only used by the master to determine when it owns
the bus and hence when it should consider that the address has been sampled by the
appropriate slave.

A delayed version of the HMASTER bus is used to control the write data multiplexor.

3.11.4 Early burst termination

Normally the arbiter will not hand over the bus to a new master until the end of a burst
of transfers. However, if the arbiter determines that the burst must be terminated early
in order to prevent excessive access time to the bus then it may transfer the grant to
another bus master before a burst has completed.

If a master loses ownership of the bus in the middle of a burst it must re-arbitrate for the
bus in order to complete the burst. The master must ensure that the HBURST and
HTRANS signals are adapted to reflect the fact that it no longer has to perform a
complete 4, 8 or 16-beat burst.

Address and
control

multiplexor

Master
1

Master
3

Master
2

Decoder

HADDR_M1[31:0]

HADDR_M2[31:0]

HGRANT_M3

HGRANT_M2

HGRANT_M1

HADDR to all slaves

HADDR_M3[31:0]

HMASTER[3:0]

AMBA AHB

3-34 © Copyright ARM Limited 1999. All rights reserved. ARM IHI 0011A

For example, if a master is only able to complete 3 transfers of an 8-beat burst, then
when it regains the bus it must use a legal burst encoding to complete the remaining 5
transfers. Any legal combination can be used, so either a 5-beat undefined length burst
or a 4-beat fixed length burst followed by a single-beat undefined length burst would be
acceptable.

3.11.5 Locked transfers

The arbiter must observe the HLOCKx signal from each master to determine when the
master wishes to perform a locked sequence of transfers. The arbiter is then responsible
for ensuring that no other bus masters are granted the bus until the locked sequence has
completed.

After a sequence of locked transfers the arbiter will always keep the bus master granted
for an additional transfer to ensure that the last transfer in the locked sequence has
completed successfully and has not received either a SPLIT or RETRY response.
Therefore it is recommended, but not mandatory, that the master inserts an IDLE
transfer after any locked sequence to provide an opportunity for the arbitration to
change before commencing another burst of transfers.

The arbiter is also responsible for asserting the HMASTLOCK signal, which has the
same timing as the address and control signals. This signal indicates to any slave that
the current transfer is locked and therefore must be processed before any other masters
are granted the bus.

3.11.6 Default bus master

Every system must include a default bus master which is granted the bus if all other
masters are unable to use the bus. When granted, the default bus master must only
perform IDLE transfers.

If no masters are requesting the bus then the arbiter may either grant the default master
or alternatively it may grant the master that would benefit the most from having low
access latency to the bus.

Granting the default master access to the bus also provides a useful mechanism for
ensuring that no new transfers are started on the bus and is a useful step to perform prior
to entering a low-power mode of operation.

The default master must be granted if all other masters are waiting for SPLIT transfers
to complete.

AMBA AHB

ARM IHI 0011A © Copyright ARM Limited 1999. All rights reserved. 3-35

3.12 Split transfers

SPLIT transfers improve the overall utilization of the bus by separating (or splitting) the
operation of the master providing the address to a slave from the operation of the slave
responding with the appropriate data.

When a transfer occurs the slave can decide to issue a SPLIT response if it believes the
transfer will take a large number of cycles to perform. This signals to the arbiter that the
master which is attempting the transfer should not be granted access to the bus until the
slave indicates it is ready to complete the transfer. Therefore the arbiter is responsible
for observing the response signals and internally masking any requests from masters
which have been SPLIT.

During the address phase of a transfer the arbiter generates a tag, or bus master number,
on HMASTER[3:0] which identifies the master that is performing the transfer. Any
slave issuing a SPLIT response must be capable of indicating that it can complete the
transfer, and it does this by making a note of the master number on the
HMASTER[3:0] signals.

Later, when the slave can complete the transfer, it asserts the appropriate bit, according
to the master number, on the HSPLITx[15:0] signals from the slave to the arbiter. The
arbiter then uses this information to unmask the request signal from the master and in
due course the master will be granted access to the bus to retry the transfer. The arbiter
samples the HSPLITx bus every cycle and therefore the slave only needs to assert the
appropriate bit for a single cycle in order for the arbiter to recognize it.

In a system with multiple SPLIT-capable slaves the HSPLITx buses from each slave
can be ORed together to provide a single resultant HSPLIT bus to the arbiter.

In the majority of systems the maximum capacity of 16 bus masters will not be used and
therefore the arbiter only requires an HSPLIT bus which has the same number of bits
as there are bus masters. However, it is recommended that all SPLIT-capable slaves are
designed to support up to 16 masters.

AMBA AHB

3-36 © Copyright ARM Limited 1999. All rights reserved. ARM IHI 0011A

3.12.1 Split transfer sequence

The basic stages of a SPLIT transaction are:

1. The master starts the transfer in an identical way to any other transfer and issues
address and control information

2. If the slave is able to provide data immediately it may do so. If the slave decides
that it may take a number of cycles to obtain the data it gives a SPLIT transfer
response.

During every transfer the arbiter broadcasts a number, or tag, showing which
master is using the bus. The slave must record this number, to use it to restart the
transfer at a later time.

3. The arbiter grants other masters use of the bus and the action of the SPLIT
response allows bus master handover to occur. If all other masters have also
received a SPLIT response then the default master is granted.

4. When the slave is ready to complete the transfer it asserts the appropriate bit of
the HSPLITx bus to the arbiter to indicate which master should be regranted
access to the bus.

5. The arbiter observes the HSPLITx signals on every cycle, and when any bit of
HSPLITx is asserted the arbiter restores the priority of the appropriate master.

6. Eventually the arbiter will grant the master so it can re-attempt the transfer. This
may not occur immediately if a higher priority master is using the bus.

7. When the transfer eventually takes place the slave finishes with an OKAY
transfer response.

3.12.2 Multiple split transfers

The bus protocol only allows a single outstanding transaction per bus master. If any
master module is able to deal with more than one outstanding transaction it requires an
additional set of request and grant signals for each outstanding transaction that it can
handle. At the protocol level a single module may appear as a number of different bus
masters, each of which can only have one outstanding transaction.

It is, however, possible that a SPLIT-capable slave could receive more transfer requests
than it is able to process concurrently. If this happens then it is acceptable for the slave
to issue a SPLIT response without recording the appropriate address and control
information for the transfer and it is only necessary for the slave to record the bus master
number. The slave can then indicate that it can process another transfer by asserting the
appropriate bits on the HSPLITx bus for all masters that the slave has previously
SPLIT, but that the slave has not recorded the address and control information.

AMBA AHB

ARM IHI 0011A © Copyright ARM Limited 1999. All rights reserved. 3-37

The arbiter is then able to regrant the masters access to the bus and they will retry the
transfer, giving the address and control information required by the slave. This means
that a master may be granted the bus a number of times before it is finally allowed to
complete the transfer it requires.

3.12.3 Preventing deadlock

Both the SPLIT and RETRY transfer responses must be used with care to prevent bus
deadlock. A single transfer can never lock the AHB as every slave must be designed to
finish a transfer within a predetermined number of cycles. However, it is possible for
deadlock to occur if a number of different masters attempt to access a slave which issues
SPLIT or RETRY responses in a manner which the slave is unable to deal with.

Split transfers

For slaves that can issue a SPLIT transfer response, bus deadlock is prevented by
ensuring that the slave can withstand a request from every master in the system, up to a
maximum of 16. The slave does not need to store the address and control information
for every transfer, it simply needs to record the fact that a transfer request has been made
and a SPLIT response issued. Eventually all masters will be at a low priority and the
slave can then work through the requests in an orderly manner, indicating to the arbiter
which request it is servicing, thus ensuring that all requests are eventually serviced.

When a slave has a number of outstanding requests it may choose to process them in
any order, although the slave must be aware that a locked transfer will have to be
completed before any other transfers can continue.

It is perfectly legal for the slave to use a SPLIT response without latching the address
and control information. The slave only needs to record that a transfer attempt has been
made by that particular master and then at a later point the slave can obtain the address
and control information by indicating that it is ready to complete the transfer. The
master will be granted the bus and will rebroadcast the transfer, allowing the slave to
latch the address and control information and either respond with the data immediately,
or issue another SPLIT response if a number of additional cycles are required.

Ideally the slave should never have more outstanding transfers than it can support, but
the mechanism to support this is required to prevent bus deadlock.

AMBA AHB

3-38 © Copyright ARM Limited 1999. All rights reserved. ARM IHI 0011A

Retry transfers

A slave which issues RETRY responses must only be accessed by one master at a time.
This is not enforced by the protocol of the bus and should be ensured by the system
architecture. In most cases slaves that issue RETRY responses will be peripherals
which need to be accessed by just one master at a time, so this will be ensured by some
higher level protocol.

Hardware protection against multiple masters accessing RETRY slaves is not a
requirement of the protocol, but may be implemented as described in the following
paragraph. The only bus-level requirement is that the slave must drive HREADY
HIGH within a predetermined number of clock cycles.

If hardware protection is required then this may be implemented within the RETRY
slave itself. When a slave issues a RETRY it can sample the master number. Between
that point and the time when the transfer is finally completed the RETRY slave can
check every transfer attempt that is made to ensure the master number is the same. If it
ever detects that the master number is different then it can take an alternative course of
action, such as:

• an ERROR response

• a signal to the arbiter

• a system level interrupt

• a complete system reset.

AMBA AHB

ARM IHI 0011A © Copyright ARM Limited 1999. All rights reserved. 3-39

3.12.4 Bus handover with split transfers

The protocol requires that a master performs an IDLE transfer immediately after
receiving a SPLIT or RETRY response allowing the bus to be transferred to another
master. Figure 3-20 shows the sequence of events that occur for a split transfer.

Figure 3-20 Handover after split transfer

The following points should be noted:

• The address for the transfer is on the bus after time T1. The slave returns the
two-cycle SPLIT response after the clock edges at T2 and T3.

• At the end of the first response cycle, T3, the master can detect that the transfer
will be SPLIT and so it changes the control signals for the following transfer to
show an IDLE transfer.

• Also at time T3 the arbiter samples the response signals and determines that the
transfer has been SPLIT. The arbiter can then adjust the arbitration priorities and
the grant signals change during the following cycle, such that the new master can
be granted the address bus after time T4.

• The new master is guaranteed immediate access because the IDLE transfer
always completes in a single cycle.

T1 T2 T3 T4 T5

HCLK

NONSEQHTRAN[1:0] SEQ

A B

Control (A)

HADDR[31:0]

HBURST[2:0]
HWRITE

HSIZE[2:0]
HPROT[3:0]

HRESP[1:0]

HREADY

A + 4

IDLE

HGRANT

SPLIT

NONSEQ

Control (B)

SPLIT OKAY

Slave
signals

split

Arbiter
changes

grant

New master
drives

address

AMBA AHB

3-40 © Copyright ARM Limited 1999. All rights reserved. ARM IHI 0011A

3.13 Reset

The reset, HRESETn, is the only active LOW signal in the AMBA AHB specification
and is the primary reset for all bus elements. The reset may be asserted asynchronously,
but is deasserted synchronously after the rising edge of HCLK.

During reset all masters must ensure the address and control signals are at valid levels
and that HTRANS[1:0] indicates IDLE.

AMBA AHB

ARM IHI 0011A © Copyright ARM Limited 1999. All rights reserved. 3-41

3.14 About the AHB data bus width

One way to improve bus bandwidth without increasing the frequency of operation is to
make the data path of the on-chip bus wider. Both the increased layers of metal and the
use of large on-chip memory blocks (such as Embedded DRAM) are driving factors
which encourage the use of wider on-chip buses.

Specifying a fixed width of bus will mean that in many cases the width of the bus is not
optimal for the application. Therefore an approach has been adopted which allows
flexibility of the width of bus, but still ensures that modules are highly portable between
designs.

The protocol allows for the AHB data bus to be 8, 16, 32, 64, 128, 256, 512 or
1024-bits wide. However, it is recommended that a minimum bus width of 32 bits is
used and it is expected that a maximum of 256 bits will be adequate for almost all
applications.

For both read and write transfers the receiving module must select the data from the
correct byte lane on the bus. Replication of data across all byte lanes is not required.

AMBA AHB

3-42 © Copyright ARM Limited 1999. All rights reserved. ARM IHI 0011A

3.15 Implementing a narrow slave on a wider bus

Figure 3-21 shows how a slave module, which has been originally designed to operate
with a 32-bit data bus, can be easily converted to operate on a wider 64-bit bus. This
only requires the addition of external logic, rather than any internal design changes, and
therefore the technique is applicable to hard macrocells.

Figure 3-21 Narrow slave on a wide bus

For the output, when converting a narrow bus into a wider bus, do one of the following:

• Replicate the data onto both halves of the wide bus (as shown in the diagram
above)

• Use an addition level of logic to ensure that only the appropriate half of the bus
is changed. This will lead to a reduction in power consumption.

A slave can only accept transfers that are as wide as its natural interface. If a master
attempts a transfer that is wider than the slave can support then the slave can use the
ERROR transfer response.

AHB
slave

HRESP[1:0]

HREADY

Transfer
response

WDATA[31:0]

HADDR[2] D Q

CE

HRDATA[31:0]

Address
and control

RDATA[31:0]

HRDATA[64:32]

HWDATA[31:0]

HWDATA[64:32]

HREADY

HCLK

AMBA AHB

ARM IHI 0011A © Copyright ARM Limited 1999. All rights reserved. 3-43

3.16 Implementing a wide slave on a narrow bus

The example in Figure 3-22 shows a wide slave being implemented on a narrow bus.
Again only external logic is required and hence predesigned or imported blocks can be
easily modified to work with a different width of data bus.

Figure 3-22 Wide slave on a narrow bus

3.16.1 Masters

Bus masters can easily be modified to work on a wider bus than originally intended, in
the same way that the slave is modified to work on a wider bus, by:

• multiplexing the input bus

• replication of the output bus.

However, bus masters cannot be made to work on a narrower bus than originally
intended, unless there is some mechanism included within the master to limit the width
of transfers that the bus master attempts. The master must never attempt a transfer
where the width (as indicate by HSIZE) is wider than the data bus to which it is
connected.

AHB
slave

HRESP[1:0]

HREADY

Transfer
response

HADDR[2] D Q

CE

HRDATA[31:0]

Address
and control

HRDATA[31:0]

HRDATA[64:32]

HWDATA[31:0]

HWDATA[64:32]

HREADY

HCLK

HWDATA[31:0]

AMBA AHB

3-44 © Copyright ARM Limited 1999. All rights reserved. ARM IHI 0011A

3.17 About the AHB AMBA components

This section describes each of the elements in an AHB-based AMBA system and
provides the generic timing parameters that are required to analyze an AMBA design.

The following notation is used for the timing parameters:

• Tis - input setup time

• Tih - input hold time

• Tov - output valid time

• Toh - output hold time.

AMBA AHB

ARM IHI 0011A © Copyright ARM Limited 1999. All rights reserved. 3-45

3.18 AHB bus slave

An AHB bus slave responds to transfers initiated by bus masters within the system. The
slave uses a HSELx select signal from the decoder to determine when it should respond
to a bus transfer. All other signals required for the transfer, such as the address and
control information, will be generated by the bus master.

3.18.1 Interface diagram

Figure 3-23 shows an AHB bus slave interface.

Figure 3-23 AHB bus slave interface

Data

Transfer
response

HREADY

HRESP[1:0]

HSPLITx[15:0]

AHB
slave

HADDR[31:0]

HRESETn

HCLK

HSELx

HTRANS[1:0]

Reset

Address
and

control

Select

HWRITE

Clock

HSIZE[2:0]

HBURST[2:0]

HRDATA[31:0]

HMASTER[3:0]

HMASTLOCK

Split-capable
slave

HWDATA[31:0]Data

AMBA AHB

3-46 © Copyright ARM Limited 1999. All rights reserved. ARM IHI 0011A

3.18.2 Timing diagrams

The following diagrams show the timing parameters related to an access to an AHB bus
slave operating in an AMBA system:

• Figure 3-24 shows the AHB slave reset timing parameters

• Figure 3-25 shows the main AHB slave timing parameters

• Figure 3-26 shows the additional timing parameters for split-capable AHB
slaves.

Figure 3-24 AHB slave reset timing

Figure 3-25 AHB timing parameters

HCLK

HRESETn

Tihrst
Tisrst

HCLK

Control

HWRITE

HSIZE[2:0]

HBURST[2:0]

HTRANS[1:0]

HWDATA[31:0]

HREADY

HRESP[1:0]

NONSEQ

Data

(A)HRDATA[31:0]

OKAY

HADDR[31:0] A

Data

(A)

HSELx

Tihctl
Tisctl

Tiha
Tisa

Tihtr
Tistr

Tihwd
Tiswd

Tohrdy

Tohrsp

Tohrd
Tovrd

Tovrsp

Tovrdy

Tihsel
Tissel

AMBA AHB

ARM IHI 0011A © Copyright ARM Limited 1999. All rights reserved. 3-47

Figure 3-26 Additional split-capable slave parameters

3.18.3 Timing parameters

The timing parameters related to an AHB bus slave are given for input signals in
Table 3-8 and for output signals in Table 3-9.

HCLK

HSPLITx[15:0]

HMASTER[3:0]

HMASTLOCK

Tihmlck
Tismlck

Tihmst
Tismst

TohspltTovsplt

Table 3-8 AHB slave input parameters

Parameter Description

Tclk HCLK minimum clock period

Tisrst HRESETn deasserted setup time before HCLK

Tihrst HRESETn deasserted hold time after HCLK

Tissel HSELx setup time before HCLK

Tihsel HSELx hold time after HCLK

Tistr Transfer type setup time before HCLK

Tihtr Transfer type hold time after HCLK

Tisa HADDR[31:0] setup time before HCLK

Tiha HADDR[31:0] hold time after HCLK

Tisctl HWRITE, HSIZE[2:0] and HBURST[2:0] control signal setup time
before HCLK

AMBA AHB

3-48 © Copyright ARM Limited 1999. All rights reserved. ARM IHI 0011A

Tihctl HWRITE, HSIZE[2:0] and HBURST[2:0] control signal hold time
after HCLK

Tiswd Write data setup time before HCLK

Tihwd Write data hold time after HCLK

Tisrdy Ready setup time before HCLK

Tihrdy Ready hold time after HCLK

Tismst Master number setup time before HCLK (SPLIT-capable only)

Tihmst Master number hold time after HCLK (SPLIT-capable only)

Tismlck Master locked setup time before HCLK (SPLIT-capable only)

Tihmlck Master locked hold time after HCLK (SPLIT-capable only)

Table 3-9 AHB slave output parameters

Parameter Description

Tovrsp Response valid time after HCLK

Tohrsp Response hold time after HCLK

Tovrdy Ready valid time after HCLK

Tohrdy Ready hold time after HCLK

Tovsplt Split valid time after HCLK (SPLIT-capable only)

Tohsplt Split hold time after HCLK (SPLIT-capable only)

Table 3-8 AHB slave input parameters (continued)

Parameter Description

AMBA AHB

ARM IHI 0011A © Copyright ARM Limited 1999. All rights reserved. 3-49

3.19 AHB bus master

An AHB bus master has the most complex bus interface in an AMBA system. Typically
an AMBA system designer would use predesigned bus masters and therefore would not
need to be concerned with the detail of the bus master interface.

3.19.1 Interface diagram

The interface diagram of an AHB bus master shows the main signal groups.

Figure 3-27 AHB bus master interface diagram

3.19.2 Bus master timing diagrams

The following diagrams show the timing parameters related to an AHB bus master
operating in an AMBA system:

• Figure 3-28 shows the AHB master reset timing parameters

• Figure 3-29 shows the AHB master transfer timing parameters

• Figure 3-30 shows the AHB master arbitration timing parameters.

Figure 3-28 AHB master reset timing parameters

HWDATA[31:0] Data

Address
and
control

HWRITE

HSIZE[2:0]

HBURST[2:0]

AHB
master

HADDR[31:0]HRESP[1:0]

HRESETn

HCLK

HGRANTx

HREADY

Reset

Transfer
response

Arbiter
grant

HBUSREQx

HLOCKx

HTRANS[1:0]
Transfer type

Arbiter

Clock

HRDATA[31:0]

HPROT[3:0]

Data

HCLK

HRESETn

Tihrst
Tisrst

AMBA AHB

3-50 © Copyright ARM Limited 1999. All rights reserved. ARM IHI 0011A

Figure 3-29 AHB master transfer timing parameters

Figure 3-30 AHB master arbitration timing parameters

HCLK

Control

HWRITE

HSIZE[2:0]

HBURST[2:0]

HPROT[3:0]

HTRANS[1:0]

HWDATA[31:0]

HREADY

HRESP[1:0]

Data

(A)

NONSEQ

Data

(A)HRDATA[31:0]

OKAY OKAY

HADDR[31:0] A

Tihrdy

Tohwd

Tohctl

Toha

TohtrTovtr

Tova

Tovctl

Tovwd

Tisrsp

Tisrdy

Tihrsp

Tihrd
Tisrd

HCLK

HGRANTx

HBUSREQx

HLOCKx

Tohreq

Tohlck

Tisgnt
Tihgnt

Tovlck

Tovreq

AMBA AHB

ARM IHI 0011A © Copyright ARM Limited 1999. All rights reserved. 3-51

3.19.3 Timing parameters

The timing parameters related to an AHB bus master operating in an AMBA system are
also shown in textual form in the following two tables. Table 3-10 details the input
signals. Table 3-11 details output signals.

Table 3-10 Bus master input timing parameters

Parameter Description

Tclk HCLK minimum clock period time

Tisrst Reset deasserted setup time before HCLK

Tihrst Reset deasserted hold time after HCLK

Tisgnt HGRANTx setup time before HCLK

Tihgnt HGRANTx hold time after HCLK

Tisrdy Ready setup time before HCLK

Tihrdy Ready hold time after HCLK

Tisrsp Response setup time before HCLK

Tihrsp Response hold time after HCLK

Tisrd Read data setup time before HCLK

Tihrd Read data hold time after HCLK

Table 3-11 Bus master output timing parameters

Parameter Description

Tovtr Transfer type valid time after HCLK

Tohtr Transfer type hold time after HCLK

Tova Address valid time after HCLK

Toha Address hold time after HCLK

Tovctl Control signal valid time after HCLK

AMBA AHB

3-52 © Copyright ARM Limited 1999. All rights reserved. ARM IHI 0011A

Tohctl Control signal hold time after HCLK

Tovwd Write data valid time after HCLK

Tohwd Write data hold time after HCLK

Tovreq Request valid time after HCLK

Tohreq Request hold time after HCLK

Tovlck Lock valid time after HCLK

Tohlck Lock hold time after HCLK

Table 3-11 Bus master output timing parameters (continued)

Parameter Description

AMBA AHB

ARM IHI 0011A © Copyright ARM Limited 1999. All rights reserved. 3-53

3.20 AHB arbiter

The role of the arbiter in an AMBA system is to control which master has access to the
bus. Every bus master has a REQUEST/GRANT interface to the arbiter and the arbiter
uses a prioritization scheme to decide which bus master is currently the highest priority
master requesting the bus.

Each master also generates an HLOCKx signal which is used to indicate that the master
requires exclusive access to the bus.

The detail of the priority scheme is not specified and is defined for each application. It
is acceptable for the arbiter to use other signals, either AMBA or non-AMBA, to
influence the priority scheme that is in use.

3.20.1 Interface diagram

Figure 3-31 shows the signal interface of an AHB arbiter.

Figure 3-31 AHB arbiter interface diagram

Arbiter
requests

and locks

HSPLITx[15:0]

HRESP[1:0]

HLOCKx3

AHB
arbiter

HRESETn

HCLK

Reset

HGRANTx1

Arbiter
grants

HREADY

HBUSREQx3

HGRANTx2

HGRANTx3

Clock

HMASTER[3:0]

HMASTLOCKHTRANS[1:0]

HBURST[2:0]

HADDR[31:0]

Address
and control

HLOCKx2

HBUSREQx2

HLOCKx1

HBUSREQx1

AMBA AHB

3-54 © Copyright ARM Limited 1999. All rights reserved. ARM IHI 0011A

3.20.2 Timing diagrams

The following diagrams show the timing parameters related to an AHB bus arbiter
operating in an AMBA system:

• Figure 3-32 shows the AHB arbiter reset timing parameters

• Figure 3-33 shows the AHB arbiter transfer timing parameters

• Figure 3-34 shows the AHB arbiter split timing parameters.

Figure 3-32 AHB arbiter reset timing parameters

Figure 3-33 AHB arbiter transfer timing parameters

HCLK

HRESETn

Tihrst
Tisrst

HCLK

ControlHBURST[2:0]

HTRANS[1:0]

HREADY

HRESP[1:0]

NONSEQ

Tihctl
Tisctl

Tihtr
Tistr

OKAY

Tihrdy

Tihrsp
Tisrsp

Tisrdy

AMBA AHB

ARM IHI 0011A © Copyright ARM Limited 1999. All rights reserved. 3-55

Figure 3-34 AHB arbiter split timing parameters

3.20.3 Timing parameters

The timing parameters related to an AHB arbiter are given in the following tables:

• Table 3-12 is for input signals

• Table 3-13 is for output signals.

HCLK

HSPLITx[15:0]

HMASTER[3:0]

HMASTLOCK

HGRANTx

HBUSREQx

HLOCKx

Tihreq
Tisreq

Tihlck
Tislck

Tihsplt
Tissplt

Tohgnt

Tovmlck Tohmlck

Tovmast

Tovgnt

Tohmast

Table 3-12 AHB arbiter input parameters

Parameter Description

Tclk HCLK minimum clock period

Tisrst Reset deasserted setup time before HCLK

Tihrst Reset deasserted hold time after HCLK

Tisrdy Ready setup time before HCLK

Tihrdy Ready hold time after HCLK

Tisrsp Response setup time before HCLK

AMBA AHB

3-56 © Copyright ARM Limited 1999. All rights reserved. ARM IHI 0011A

Tihrsp Response hold time after HCLK

Tisreq Request setup time before HCLK

Tihreq Request hold time after HCLK

Tislck Lock setup time before HCLK

Tihlck Lock hold time after HCLK

Tissplt Split setup time before HCLK

Tihsplt Split hold time after HCLK

Tistr Transfer type setup time before HCLK

Tihtr Transfer type hold time after HCLK

Tisctl Control signal setup time before HCLK

Tihctl Control signal hold time after HCLK

Table 3-13 AHB arbiter output parameters

Parameter Description

Tovgnt Grant valid time after HCLK

Tohgnt Grant hold time after HCLK

Tovmst Master number valid time after HCLK

Tohmst Master number hold time after HCLK

Tovmlck Master locked valid time after HCLK

Tohmlck Master locked hold time after HCLK

Table 3-12 AHB arbiter input parameters (continued)

Parameter Description

AMBA AHB

ARM IHI 0011A © Copyright ARM Limited 1999. All rights reserved. 3-57

3.21 AHB decoder

The decoder in an AMBA system is used to perform a centralized address decoding
function, which improves the portability of peripherals, by making them independent of
the system memory map.

3.21.1 Interface diagram

Figure 3-35 shows an AHB decoder.

Figure 3-35 AHB decoder interface diagram

3.21.2 Timing diagram

The timing parameters for an AHB decoder are shown in Figure 3-36.

Figure 3-36 AHB decoder timing parameter

3.21.3 Timing parameter

The timing parameter related to an AHB decoder is given in Table 3-14.

Address
AHB

decoder
HADDR[31:0]

HSELx2 Select

HSELx1

HSELx3

HADDR A

HSELx

Tadsel

HCLK

Table 3-14 AHB decoder output parameter

Parameter Description

Tadsel Delay from Address to Select valid

AMBA AHB

3-58 © Copyright ARM Limited 1999. All rights reserved. ARM IHI 0011A

ARM IHI 0011A © Copyright ARM Limited 1999. All rights reserved. 4-1

Chapter 4
AMBA ASB

This chapter introduces the Advanced Microcontroller Bus Architecture (AMBA)
Advanced System Bus specification. It contains the following sections:

• About the AMBA ASB on page 4-2

• AMBA ASB description on page 4-4

• ASB transfers on page 4-6

• Address decode on page 4-14

• Transfer response on page 4-16

• Multi-master operation on page 4-19

• Reset operation on page 4-23

• Description of ASB signals on page 4-25

• About the ASB AMBA components on page 4-46

• ASB bus slave on page 4-47

• ASB bus master on page 4-52

• ASB decoder on page 4-63

• ASB arbiter on page 4-71.

AMBA ASB

4-2 © Copyright ARM Limited 1999. All rights reserved. ARM IHI 0011A

4.1 About the AMBA ASB

The Advanced System Bus (ASB) specification defines a high-performance bus that can
be used in the design of high performance 16 and 32-bit embedded microcontrollers.

AMBA ASB supports the efficient connection of processors, on-chip memories and off-
chip external memory interfaces with low-power peripheral macrocell functions. The
bus also provides the test infrastructure for modular macrocell test and diagnostic
access.

4.1.1 A typical AMBA ASB-based microcontroller

An AMBA-based microcontroller typically consists of a high-performance system
backbone bus, able to sustain the external memory bandwidth, on which the CPU and
other Direct Memory Access (DMA) devices reside, plus a bridge to a narrower APB
bus on which the lower bandwidth peripheral devices are located. Figure 4-1 shows
both ASB and APB in a typical AMBA system.

Figure 4-1 A typical AMBA system

The external memory interface is application-specific and may only have a narrow data
path, but it supports a test access mode which allows the internal ASB and APB
modules to be tested in isolation with system-independent test sets.

AMBA Advanced System Bus (ASB)
* High performance
* Pipelined operation
* Burst transfers
* Multiple bus masters

AMBA Advanced Peripheral Bus (APB)
* Low power
* Latched address and control
* Simple interface
* Suitable for many peripherals

Timer

High-bandwidth
on-chip RAM

B
R
I
D
G
E

High-performance
ARM processor

High-bandwidth
Memory Interface

ASB APB

PIO

UART

Keypad

ASB to APB Bridge

DMA bus
master

AMBA ASB

ARM IHI 0011A © Copyright ARM Limited 1999. All rights reserved. 4-3

4.1.2 AMBA ASB and APB

The APB appears as a local secondary bus that is encapsulated as a single ASB slave
device. APB provides a low-power extension to the system bus which builds on ASB
signals directly.

The APB bridge appears as a slave module which handles the bus handshake and
control signal retiming on behalf of the local peripheral bus. By defining the APB
interface from the starting point of the system bus, the benefits of the system diagnostics
and test methodology can be exploited.

AMBA ASB

4-4 © Copyright ARM Limited 1999. All rights reserved. ARM IHI 0011A

4.2 AMBA ASB description

The ASB is a high-performance pipelined bus, which supports multiple bus masters.

The basic flow of the bus operation is:

1. The arbiter determines which master is granted access to the bus.

2. When granted, a master initiates transfers on the bus.

3. The decoder uses the high order address lines to select a bus slave.

4. The slave provides a transfer response back to the bus master and data is
transferred between the master and slave.

There are three types of transfer that can occur on the ASB:

NONSEQUENTIAL

Used for single transfers or for the first transfer of a burst.

SEQUENTIAL

Used for transfers in a burst. The address of a SEQUENTIAL
transfer is always related to the previous transfer.

ADDRESS-ONLY

Used when no data movement is required. The three main uses for
ADDRESS-ONLY transfers are for IDLE cycles, for bus master
HANDOVER cycles, and for speculative address decoding
without committing to a data transfer.

AMBA ASB

ARM IHI 0011A © Copyright ARM Limited 1999. All rights reserved. 4-5

Figure 4-2 shows the use of NONSEQUENTIAL and SEQUENTIAL transfers to
perform a burst transaction.

Figure 4-2 ASB transfers

The burst starts with a NONSEQUENTIAL transfer to address A. The following
SEQUENTIAL transfers are to successive addresses A+4, A+8 and A+12.

BWAIT
BERROR

BLAST

BA[31:0]

BCLK

BTRAN[1:0] N-TRAN

BWRITE
BSIZE[1:0]

BPROT[1:0]

S-TRAN S-TRAN S-TRAN S-TRAN S-TRAN

Addr Addr + 4 Addr + 8 Addr + C

Control

WAIT DONE DONE DONE DONE

Data
(A)

Data
(A+4)

Data
(A+8)

Data
(A+C)

BD[31:0]

DSELx

Transfer 1 Transfer 2 Transfer 3 Transfer 4

AMBA ASB

4-6 © Copyright ARM Limited 1999. All rights reserved. ARM IHI 0011A

4.3 ASB transfers

When a master has been granted the bus it can perform the following transfers:

• NONSEQUENTIAL data transfer

• SEQUENTIAL data transfer

• ADDRESS-ONLY transfer.

A transfer is defined as starting at the falling edge of BCLK after the previous transfer
has completed, as indicated by BWAIT being LOW, and running until the falling edge
of BCLK after a complete transfer response is received, again indicated by BWAIT
being LOW.

The type of transfer that a bus master will perform can be determined by the value on
the BTRAN signals at the start of the transfer. During the transfer the BTRAN signals
will change to indicate the type of the following transfer.

AMBA ASB

ARM IHI 0011A © Copyright ARM Limited 1999. All rights reserved. 4-7

4.3.1 Nonsequential transfer

A NONSEQUENTIAL transfer occurs for either a single transfer or at the start of a
burst of transfers. Figure 4-3 shows a typical NONSEQUENTIAL read transfer
including wait states.

Figure 4-3 Nonsequential transfer

The following points should be noted:

• The address and control signals start to change in the BCLK HIGH phase before
the transfer starts.

• For a NONSEQUENTIAL transfer a valid address may not be available until
very late in the BCLK HIGH phase, or even until the start of the clock LOW
phase at the beginning of the transfer.

BWRITE
BSIZE[1:0]

BPROT[1:0]

BA[31:0]

BCLK

BTRAN[1:0] N-TRAN

Addr

Control

WAITDONE WAIT DONE

Data
(A+8)

BD[31:0]
Read

DSELx

Decode cycle Read access

BWAIT
BERROR

BLAST

WAIT

Start of transfer End of transfer

AMBA ASB

4-8 © Copyright ARM Limited 1999. All rights reserved. ARM IHI 0011A

• The decoder, which requires a stable address in order to select the correct slave,
will automatically insert a wait state in the first cycle of NONSEQUENTIAL
transfers. This is referred to as a DECODE cycle and provides an adequate time
for the decoder to examine the high order address lines and assert the appropriate
DSELx during the HIGH phase of the DECODE cycle.

• For the remaining cycles of the transfer, the slave will provide a transfer
response and the data exchange will occur between the master and slave.

Note

In certain system designs, which are typically those with a low-frequency system clock,
the address is valid early enough in the BCLK HIGH phase before the start of the
transfer, allowing the decoder to generate a valid DSELx signal before the falling edge
of BCLK. Such systems do not require the addition of a DECODE cycle at the start of
the NONSEQUENTIAL transfers and the operation of such a system is described in
more detail in Address decode on page 4-14.

• The data bus, BD[31:0], must be valid by the falling edge of BCLK at the end of
the transfer. During a write cycle, the bus master is responsible for driving the
data bus, which it will do from the start of the clock HIGH phase, in order that
the slave may accept valid data by the falling edge of the clock. During a read
cycle the appropriate slave must drive the data bus, such that it is valid by the end
of the HIGH phase.

• Because a number of different bus slaves may drive data on to the ASB it is
necessary to ensure that different slaves do not overlap when driving data onto
the bus. An entire phase of non-overlap is provided as slaves and masters may
not drive data during the clock LOW phase at the start of a NONSEQUENTIAL
transfer.

• As many of the bus signals are shared and have turnaround periods when there is
no active driver, it is necessary to ensure that bus hold cells are provided to
prevent floating levels being present on the bus.

4.3.2 Sequential transfer

A SEQUENTIAL transfer occurs when the address is related to that of the previous
transfer. The control information, as indicated by BWRITE, BPROT and BSIZE, will
be the same as the previous transfer.

If the SEQUENTIAL transfer follows a NONSEQUENTIAL or another
SEQUENTIAL transfer, the address can be calculated by using the previous size and
address. For example a burst of word accesses would be to addresses A, A+4, A+8,
whereas a burst of halfword accesses would be to addresses A, A+2, A+4.

AMBA ASB

ARM IHI 0011A © Copyright ARM Limited 1999. All rights reserved. 4-9

If a SEQUENTIAL transfer follows an ADDRESS-ONLY cycle then the address will
be the same as that of the ADDRESS-ONLY cycle. This combination of an ADDRESS-
ONLY followed by SEQUENTIAL allows both a single access using a SEQUENTIAL
transfer and also allows a burst of transfers to start with a SEQUENTIAL transfer. An
example of the use of an ADDRESS-ONLY followed by SEQUENTIAL is shown later
in Figure 4-6.

Figure 4-4 shows a SEQUENTIAL transfer with one wait state. This closely resembles
a NONSEQUENTIAL transfer.

Figure 4-4 Sequential transfer

The main differences are:

• BTRAN signals indicate a SEQUENTIAL transfer

• address is always valid in the BCLK HIGH phase at the start of the transfer

• address is related to the preceding transfer

BWAIT
BERROR

BLAST

BA[31:0]

BCLK

BTRAN[1:0] S-TRAN

Previous address
+ transfer size

WAIT DONE

Data
BD[31:0]

Write

Read access

BWRITE
BSIZE[1:0]

BPROT[1:0]
Control

Data
BD[31:0]

Read

DONE

AMBA ASB

4-10 © Copyright ARM Limited 1999. All rights reserved. ARM IHI 0011A

• control information remains the same as the preceding transfer

• for a write the data bus is driven throughout the entire transfer.

The data bus, BD[31:0], can be driven throughout the entire transfer because, unlike the
NONSEQUENTIAL case, there is no requirement to provide a period of time to allow
for bus turnaround.

4.3.3 Address-only transfer

An ADDRESS-ONLY transfer indicates that no data transaction is required. During an
ADDRESS-ONLY transfer it is possible that the address and control information may
also be invalid. The only signals that must be driven to valid levels are:

• BTRAN - to indicate the type of the next transfer

• BLOK - to allow the arbitration process to continue.

As ADDRESS-ONLY transactions do not access slaves on the bus, they only require a
single cycle and therefore the BWAIT signal will be LOW. This signal is driven by the
bus decoder, as no slave will be selected during the ADDRESS-ONLY cycle. A bus
master may perform a number of ADDRESS-ONLY transfers in succession if it does
not require the bus for data transfer.

The ADDRESS-ONLY transfer can be used in three different ways:

• as a true IDLE cycle (when the bus master does not require the bus)

• to speculatively broadcast an address for the next transfer, without committing to
the transfer

• to provide a turnaround cycle during bus master handover.

AMBA ASB

ARM IHI 0011A © Copyright ARM Limited 1999. All rights reserved. 4-11

If the ADDRESS-ONLY transfer is used as a true IDLE cycle then the address and
control signals are not required to be valid at any point during the transfer (see
Figure 4-5).

Figure 4-5 Address-only transfer

The BLOK signal is the only exception and this must be driven to a valid level during
all ADDRESS-ONLY transfers to allow the arbitration process to continue.

BWAIT
BERROR

BLAST

BLOK

BCLK

BTRAN[1:0] A-TRAN

DONEDONE

Decoder drives
response

Start of transfer End of transfer

AMBA ASB

4-12 © Copyright ARM Limited 1999. All rights reserved. ARM IHI 0011A

The second use of the ADDRESS-ONLY transfer is to speculatively broadcast the
address for a transfer, without actually committing to the transfer (see Figure 4-6).

Figure 4-6 Address-only transfer to start burst

Using an ADDRESS-ONLY transfer to speculatively broadcast the address allows
address decoding to be performed by the decoder during the ADDRESS-ONLY cycle.
If the bus master then commits to the burst it is possible to start the burst with a
SEQUENTIAL transfer, thus removing the need for an extra DECODE cycle before the
transfer starts.

BWAIT
BERROR

BLAST

BA[31:0]

BCLK

BTRAN[1:0] A-TRAN

DONE WAIT

Burst starts with
Sequential transfer

BWRITE
BSIZE[1:0]

BPROT[1:0]

S-TRAN

Address

Control

DONE

Address given during
Address-only transfer

AMBA ASB

ARM IHI 0011A © Copyright ARM Limited 1999. All rights reserved. 4-13

The final use of an ADDRESS-ONLY transfer is to provide a turnaround period during
bus master handover (see Figure 4-7).

Figure 4-7 Address-only transfer for bus master handover

A bus master which becomes granted on the bus must start with an ADDRESS-ONLY
transfer and, in this case, the new bus master does not drive the address and control
signals immediately, but provides a phase of turnaround before driving the signals in
the LOW phase of the transfer.

Note

In this case, the address and control information will not become valid until the LOW
phase of BCLK.

BWAIT
BERROR

BLAST

BA[31:0]

BCLK

BTRAN[1:0] A-TRAN

DONE WAIT

First transfer of
new bus master

BLOK
BWRITE

BSIZE[1:0]
BPROT[1:0]

S-TRAN

Address

DONE

Address-only transfer
for bus handover

Control

DONE

AMBA ASB

4-14 © Copyright ARM Limited 1999. All rights reserved. ARM IHI 0011A

4.4 Address decode

In an ASB-based AMBA system the address decoding is performed by a centralized
decoder.

The decoder uses the type of each transfer to determine which of the following
functions should be performed:

• For an ADDRESS-ONLY transfer the decoder will respond with a DONE
transfer response and no slaves will be selected. During ADDRESS-ONLY
transfers the decoder performs an address decode speculatively in case the
ADDRESS-ONLY transfer is followed immediately by a SEQUENTIAL
transfer.

• For NONSEQUENTIAL transfers (or when the previous transfer was terminated
with a LAST transaction response) the decoder will insert a single wait state at
the start of the transfer to allow sufficient time for address decoding (although
the additional wait state may not be required in all systems).

The additional wait state inserted by the decoder is referred to as a DECODE
cycle and during the DECODE cycle no select signals, DSELx, are asserted.

In the second cycle of the transfer the decoder will either select the appropriate
slave or provide an ERROR transfer response.

An ERROR response is provided in the following circumstances:

• there are no slaves present at the address of the transfer

• the transfer is to a protected region of memory

• the alignment of the transfer is not supported by the memory system.

In the more usual case of a valid transfer, the decoder will assert the appropriate
slave DSELx signal and allow the selected slave to provide the transfer response
for the remaining cycles of the transfer.

• For SEQUENTIAL transfers the decoder asserts the appropriate DSELx signal
and the selected slave provides the transfer response. It is not necessary for the
decoder to decode the address as this will have been performed in a previous
NONSEQUENTIAL or ADDRESS-ONLY transfer.

As the decoder does not perform an address decode on SEQUENTIAL transfers
it is necessary for the slave to provide a LAST transfer response if a transfer is
about to cross a memory boundary. The decoder is also responsible for
generating an internal version of the LAST signal when the decoder detects that
a SEQUENTIAL transfer will cross a memory boundary.

The insertion of a DECODE cycle on NONSEQUENTIAL transfers can be used to
improve the performance of the system. In a typical design the time required for address
decoding will increase the critical path of an access to a slave and often result in the

AMBA ASB

ARM IHI 0011A © Copyright ARM Limited 1999. All rights reserved. 4-15

need for additional wait states. The decoder can be used to reduce this overhead by
automatically inserting a DECODE cycle on NONSEQUENTIAL transfers only, but
allowing SEQUENTIAL transfers to complete without additional wait states.

In some systems, typically those with a low clock frequency, additional wait states are
not required for address decoding and in such systems the decoder may be simplified,
such that both SEQUENTIAL and NONSEQUENTIAL transfers occur without the
addition of a DECODE cycle.

AMBA ASB

4-16 © Copyright ARM Limited 1999. All rights reserved. ARM IHI 0011A

4.5 Transfer response

For every transfer that is initiated by a bus master a response must be generated and this
is provided either by the decoder or by the selected bus slave. The transfer response is
provided using the BWAIT, BERROR and BLAST signals, which are driven during
the LOW phase of the clock.

Figure 4-8 shows an example of how the transfer response is used to insert three wait
states in order to extend a transfer.

Figure 4-8 Transfer response

The following transfer responses are available:

WAIT The transfer must be extended before it can complete.

DONE The transfer has completed successfully.

ERROR The transfer has completed, but an error has occurred. The error
condition should be signalled to the bus master so it is aware that
the transfer has been unsuccessful.

BD[31:0]

BA[31:0]

BCLK

BTRAN[1:0] S-TRAN

Addr

WAIT WAIT DONE

BWAIT
BERROR

BLAST

WAIT

Start of transfer End of transfer

Data

AMBA ASB

ARM IHI 0011A © Copyright ARM Limited 1999. All rights reserved. 4-17

LAST The transfer has completed successfully, but the slave is unable to
accept further burst transfers or a memory boundary has been
reached. This response is identical to DONE for the bus master,
but indicates to the decoder that it must insert a DECODE cycle at
the start of the next transfer.

RETRACT The transfer has not yet completed, so the bus master should retry
the transfer. The RETRACT response can be used by a slave to
signal to a bus master that the transfer can complete, but this may
take a number of bus cycles.

Using the RETRACT response prevents the bus from being locked up by a transfer
which may take a long time to complete and frees the bus for use by a higher priority
bus master.

Unlike the other response codes, which take a single cycle, the RETRACT response is
a two-stage response, as shown in Figure 4-9.

Figure 4-9 Retract operation

BD[31:0]

BA[31:0]

BCLK

Address

Current transfer

BERROR

BLAST

BWAIT

Next transfer

Retract next cycle Retract

AMBA ASB

4-18 © Copyright ARM Limited 1999. All rights reserved. ARM IHI 0011A

The following points should be noted:

• In the first stage the slave signals to the bus master that a RETRACT is going to
take place, using the RETNEXT response (BWAIT, BLAST and BERROR all
HIGH).

• In the second stage the transfer is completed when the slave provides the
RETRACT response (BWAIT LOW, BLAST and BERROR both HIGH).

This two-stage response provides the bus master with adequate warning that it should
not consider the transfer to have completed when the BWAIT signal goes LOW.

All bus masters must support the RETRACT mechanism, however not all slaves are
required to implement the RETRACT response. Typically, a RETRACT response
would only be provided by a slave which does not have a short guaranteed completion
time and hence could deadlock the bus for a significant period of time.

For most transfers the response will be provided by the selected bus slave, however the
decoder provides the response when:

• the transfer is ADDRESS-ONLY

• the transfer is to an area of memory where there are no bus slaves

• an access violation occurs to a protected region of memory.

AMBA ASB

ARM IHI 0011A © Copyright ARM Limited 1999. All rights reserved. 4-19

4.6 Multi-master operation

The AMBA bus specification supports multiple bus masters on the high-performance
ASB. A simple two-wire request and grant mechanism is implemented between the
arbiter and each bus master. The arbiter ensures that only one bus master is active on
the bus and also ensures that when no masters are requesting the bus a default master is
granted.

The specification also supports a shared lock signal. This allows bus masters to indicate
that the current transfer should not be separated from the following transfer and will
prevent other bus masters from gaining access to the bus until the locked transfers have
completed.

Efficient arbitration is important to reduce dead-time between successive masters being
active on the bus. The bus protocol supports pipelined arbitration, such that arbitration
for the next transfer is performed during the current transfer.

The arbitration protocol is defined, but the prioritization is flexible and left to the
application. Typically, however, the test interface would be given the highest priority
to ensure test access under all conditions. Every system must also include a default bus
master, which is granted the bus when no bus masters are requesting it.

The request signal, AREQx, from each bus master to the arbiter indicates that the bus
master requires the bus. The grant signal from the arbiter to the bus master, AGNTx,
indicates that the bus master is currently the highest priority master requesting the bus.

The bus master:

• must drive the BTRAN signals during BCLK HIGH when AGNTx is HIGH

• will become granted when AGNTx is HIGH and BWAIT is LOW on a rising
edge of BCLK.

The shared bus lock signal, BLOK, indicates to the arbiter that the following transfer is
indivisible from the current transfer and that no other bus master should be given access
to the bus.

A bus master must always drive a valid level on the BLOK signal when granted the bus
to ensure that the arbitration process can continue, even if the bus master is not
performing any transfers.

AMBA ASB

4-20 © Copyright ARM Limited 1999. All rights reserved. ARM IHI 0011A

4.6.1 Arbiter

The arbiter functions as follows:

1. Bus masters assert AREQx during the HIGH phase of BCLK.

2. The arbiter samples all AREQx signals on the falling edge of BCLK.

3. During the LOW phase of BCLK the arbiter also samples the BLOK signal and
then asserts the appropriate AGNTx signal:

• if BLOK is LOW, then the arbiter will grant the highest priority bus
master

• if BLOK is HIGH, then the arbiter will keep the same bus master granted.

The arbiter can update the grant signals every bus cycle. However, a new bus master
can only become granted and start driving the bus when the current transfer completes,
as indicated by BWAIT being LOW. Therefore, it is possible for the potential next bus
master to change during waited transfers.

The BLOK signal is ignored by the arbiter during the single cycle of handover between
two different bus masters.

If no bus masters are requesting the bus then the arbiter must grant the default bus
master.

The arbitration protocol is defined, but the prioritization is flexible and left to the
application. A simple fixed-priority scheme may be used. Alternatively, a more
complex scheme can be implemented if required by the application.

4.6.2 Bus master handover

Bus master handover occurs when a bus master, which is not currently granted the bus,
becomes the new granted bus master.

A bus master becomes granted when AGNTx is HIGH and BWAIT is LOW. AGNT
HIGH indicates that the bus master is currently the highest priority master requesting
the bus and BWAIT LOW indicates the previous transfer has completed.

AMBA ASB

ARM IHI 0011A © Copyright ARM Limited 1999. All rights reserved. 4-21

Figure 4-10 shows the bus master handover process.

Figure 4-10 Bus master handover

The following points should be noted:

• When AGNTx is asserted a bus master must drive the BTRAN signals during
BCLK HIGH. This may continue for many cycles if the previous transfer is
waited.

• Prior to handover BTRAN must indicate an ADDRESS-ONLY cycle because
the new bus master must commence with an ADDRESS-ONLY cycle to allow
for bus turnaround.

• When the previous transfer completes the new bus master will become granted.

• In the last clock HIGH phase of the previous transfer the address bus will stop
being driven by the previous bus master.

BWAIT
BERROR

BLAST

BA[31:0]

BCLK

BTRAN[1:0]

BD[31:0]

A-TRAN A-TRAN A-TRAN S-TRAN

Previous transfer
address

Address

WAIT WAIT DONE DONE DONE

AGNT

Previous transfer New master granted

AREQ

Data
Previous transfer

data

Last transfer
completes

Decoder drives
response

Slave drives
response

C0 C1 C2 C3 C4

AMBA ASB

4-22 © Copyright ARM Limited 1999. All rights reserved. ARM IHI 0011A

• The new bus master starts to drive the address bus and control signals during the
clock LOW phase. The first transfer may then commence in the following bus
cycle.

During a waited transfer, bus master handover may be delayed and it is possible that the
AGNTx to a particular bus master may be asserted and then negated, if another higher
priority bus master then requests the bus, before the current transfer has completed.

4.6.3 Default bus master

Every system must be designed with a single default bus master, which will be granted
when no other bus master is requesting the bus. The default bus master is responsible
for driving the following signals to ensure the bus remains active:

• BTRAN must be driven to indicate ADDRESS-ONLY transfer

• BLOK must be driven LOW.

4.6.4 Locked transfers

It is important that bus masters do not attempt to perform locked transfers to slaves
which can give a RETRACT response. There are two reasons for this:

• The bus could remain locked for a large number of cycles.

• If the RETRACT occurs on the last transfer of the locked sequence, then the
arbiter could have changed ownership of the bus to the next master before it
completes and therefore the final transfer will not have been locked to the
sequence.

AMBA ASB

ARM IHI 0011A © Copyright ARM Limited 1999. All rights reserved. 4-23

4.7 Reset operation

The reset signal, BnRES, is active LOW and may be asserted asynchronously to
guarantee the bus is in a safe state. During reset the following actions occur on the bus:

• the arbiter grants the default bus master

• the default bus master must:

• drive BTRAN to indicate ADDRESS-ONLY transfer

• drive BLOK LOW to allow arbitration.

• all other bus masters tristate shared bus signals

• the decoder must:

• de-assert all slave select signals, DSELx
• provide the appropriate transfer response.

• all slaves tristate shared bus signals.

4.7.1 Exit from reset

Figure 4-11 shows an example of the exit from reset sequence.

Figure 4-11 Exiting from reset

The following points should be noted:

• During cycle C1 BnRES is de-asserted during the clock LOW phase.

BWAIT
BERROR

BLAST

BA[31:0]

BCLK

BTRAN[1:0] A-TRAN S-TRAN

Address

DONE DONE WAIT DONE

BnRES

C0 C1 C2 C3

AMBA ASB

4-24 © Copyright ARM Limited 1999. All rights reserved. ARM IHI 0011A

• During the clock HIGH phase of cycle C1 the default bus master may drive the
BTRAN signal to indicate that it wishes to start a transfer.

• The transfer will start during cycle C2 and, in the example shown, the transfer is
waited and continues into cycle C3.

AMBA ASB

ARM IHI 0011A © Copyright ARM Limited 1999. All rights reserved. 4-25

4.8 Description of ASB signals

This section provides more detailed information about all the AMBA ASB signals,
including their intended use and phase-accurate timing requirements.

It is necessary to ensure that bus hold cells are provided to prevent floating levels being
present on the bus. This is possible because many of the bus signals are shared, and have
turnaround periods when there is no active driver.

4.8.1 Clock

BCLK is the primary clock, which is used to time all bus transfers. Both edges of the
clock are used.

4.8.2 Reset

A single active LOW reset signal, BnRES, is supported which is used to reset the bus.
The reset signal may be asserted LOW asynchronously during either clock phase, but is
always de-asserted during the LOW phase of BCLK.

Figure 4-12 Reset signal

During reset the following actions occur on the bus:

• the arbiter grants the default bus master

• the default bus master must:

• drive BTRAN to indicate ADDRESS-ONLY transfer

• drive BLOK LOW to allow arbitration.

• all other bus masters tristate shared bus signals

• the decoder must:

• de-assert all slave select signals, DSELx
• provide the appropriate transfer response.

• all slaves tristate shared bus signals.

The BnRES signal may be used to reset the bus during time-out conditions.

BCLK

BnRES

AMBA ASB

4-26 © Copyright ARM Limited 1999. All rights reserved. ARM IHI 0011A

In the majority of bus masters and slaves the BnRES signal will be used to reset both
the bus interface and the main core of the component. However, it is acceptable for
some system elements, such as a real-time clock, to use BnRES to only reset the bus
interface. Such system elements would typically have a second reset input to allow the
component core to be reset at initial power-up and for testing purposes.

4.8.3 Transfer type

Before a transfer starts the bus master indicates which type of the transfer it is, using
BTRAN[1:0]. The following transfer types can be set:

• ADDRESS-ONLY

• NONSEQUENTIAL

• SEQUENTIAL.

Table 4-1 shows the encoding of the BTRAN[1:0] signals:

From the table it can be deduced that BTRAN[1] can be used to determine that a data
transfer is required next cycle.

Table 4-1 BTRAN encoding

BTRAN
Transfer type Description

[1] [0]

0 0 ADDRESS-ONLY Used when no data movement is required. The three
main uses for ADDRESS-ONLY transfers are:
• for IDLE cycles
• for bus master handover cycles
• for speculative address decoding without

committing to a data transfer.

0 1 - Reserved

1 0 NONSEQUENTIAL Used for single transfers or for the first transfer of a
burst. The address of the transfer is unrelated to the
previous bus access.

1 1 SEQUENTIAL Used for successive transfers in a burst. The address of
a SEQUENTIAL transfer is always related to the
previous transfer.

AMBA ASB

ARM IHI 0011A © Copyright ARM Limited 1999. All rights reserved. 4-27

The BTRAN signals are driven by a bus master during the HIGH phase of BCLK when
the AGNTx input is HIGH (see Figure 4-13).

Figure 4-13 BTRAN timing

In a multi-master system, the bus master that drives BTRAN may change during an
extended transfer. Therefore, BTRAN must only be considered valid when the previous
transfer has completed, as indicated by BWAIT LOW.

4.8.4 Address and control information

The address and control signals are:

• address bus - BA[31:0]
• transfer direction - BWRITE
• transfer size - BSIZE[1:0]
• protection information - BPROT[1:0].

4.8.5 Address bus

The 32-bit address bus, BA[31:0], provides the address of the transfer. All transfers are
memory-mapped and therefore all memory and peripherals within the system must have
an address range within which they are accessed. The decoder uses the address bus
(usually the higher order bits) to determine which bus slave is to be accessed.

4.8.6 Transfer direction

The BWRITE signal is used to indicate the direction of the transfer (see Table 4-2).
When BWRITE is LOW the transfer is a read access and when BWRITE is HIGH the
transfer is a write access.

BCLK

BTRAN[1:0] Transfer
type

Table 4-2 BWRITE encoding

BWRITE Transfer direction

0 Read transfer

1 Write transfer

AMBA ASB

4-28 © Copyright ARM Limited 1999. All rights reserved. ARM IHI 0011A

4.8.7 Transfer size

BSIZE[1:0] encodes the size of a transfer (see Table 4-3). Byte, halfword and word are
all defined, with the final encoding being reserved for future use.

When performing transfers that are narrower than the data bus, such as a byte or
halfword transfer, the bus master may replicate the data across the bus, making the bus
master effectively bi-endian. When responding to read cycles, a typical slave will not
replicate the data on the bus and therefore it is important that the master is expecting
data on the same byte lane as that which the slave is driving.

4.8.8 Protection information

The bus master may use the BPROT signals to provide additional information about
the transfer it is performing (see Table 4-4). This information is primarily intended for
use by the decoder when it is acting as a bus protection unit and the majority of bus
slaves will not use these signals.

Table 4-3 BSIZE encoding

BSIZE
Transfer width

[1] [0]

0 0 Byte (8 bits)

0 1 Halfword (16 bits)

1 0 Word (32 bits)

1 1 Reserved

Table 4-4 BPROT encoding

BPROT
Transfer privilege

[1] [0]

- 0 Opcode fetch

- 1 Data access

0 - User access

1 - Privileged access

AMBA ASB

ARM IHI 0011A © Copyright ARM Limited 1999. All rights reserved. 4-29

4.8.9 Address and control signal timing

The address and control information is generated by the bus master from the rising edge
of BCLK. However, the timing of the address and control information is considered
separately for NONSEQUENTIAL and SEQUENTIAL transfer types. This is because
a bus master will typically have significantly different timing parameters in each case.

It is a common characteristic that bus masters will have fast address and control output
valid timings for SEQUENTIAL transfers, as shown in Figure 4-14. This is because a
bus master is usually able to generate a SEQUENTIAL address well before the start of
the transfer and therefore the output valid time from the bus master is mainly dependent
on the time required to drive the new value onto the bus.

Figure 4-14 Sequential address and control timing

BA[31:0]

BCLK

BTRAN[1:0] S-TRAN

Sequential
address

BWRITE
BSIZE[1:0]

BPROT[1:0]

Sequential
control

Start of transfer

AMBA ASB

4-30 © Copyright ARM Limited 1999. All rights reserved. ARM IHI 0011A

For NONSEQUENTIAL transfers the bus master will often have significantly slower
output valid times for address and control signals, compared to those for
SEQUENTIAL transfers and this is shown in Figure 4-15.

Figure 4-15 Nonsequential address and control timing
with low-frequency and high-frequency clocks

In systems where the clock frequency is approaching the maximum possible, it is
common for the address and control output valid time to be greater than a clock phase,
thus resulting in the address not becoming valid until the BCLK LOW phase at the start
of the transfer, as shown in Figure 4-15.

BWRITE
BSIZE [1:0]

BPROT [1:0]

BA [31:0]

BCLK

BTRAN [1:0] N-TRAN

Nonsequential
address

Nonsequential
control

Start of transfer

BWRITE
BSIZE[1:0]

BPROT[1:0]

BA[31:0]

BCLK

Nonsequential
address

Nonsequential
control

Start of transfer

BTRAN [1:0] N-TRAN

AMBA ASB

ARM IHI 0011A © Copyright ARM Limited 1999. All rights reserved. 4-31

For ADDRESS-ONLY transfers the address and control information is not valid. In the
special case of the ADDRESS-ONLY followed immediately by a SEQUENTIAL
transfer, as shown in Figure 4-16, the bus master generates the address and control
information during the ADDRESS-ONLY transfer, such that it is valid throughout the
BCLK HIGH phase before the start of the SEQUENTIAL transfer.

Figure 4-16 Address-only followed by sequential transfer
address and control timing

BA[31:0]

BCLK

BTRAN[1:0] A-TRAN

Start of transfer

BWRITE
BSIZE[1:0]

BPROT[1:0]

S-TRAN

Address

Control

AMBA ASB

4-32 © Copyright ARM Limited 1999. All rights reserved. ARM IHI 0011A

4.8.10 Tristate enable of address and control signals

A bus master may only drive the address and control signals when the bus master is
granted the bus. To allow for a period of bus turnaround, when a bus master is first
granted the bus it will not drive in the BCLK HIGH phase before the first transfer.
Instead, the bus master must always start a period of bus ownership with an ADDRESS-
ONLY transfer and the address and control signals are not driven until the BCLK LOW
phase of the ADDRESS-ONLY transfer (see Figure 4-17).

Figure 4-17 Address and control signals during bus master handover

For multi-master systems:

• When the master is first granted, the signals are not driven until the first LOW
phase of BCLK when the master becomes active on the bus.

• When a bus master is granted the bus it drives the address and control signals
during both phases of BCLK.

• The bus master stops driving the signals in the last BCLK HIGH phase, when
the master loses mastership of the bus.

BA[31:0]

BCLK

BTRAN[1:0] A-TRAN

Previous transfer
completes

BWRITE
BSIZE[1:0]

BPROT[1:0]

S-TRAN

Address-only after
bus turnaround

Sequential transfer

New bus masterPrevious bus master

AMBA ASB

ARM IHI 0011A © Copyright ARM Limited 1999. All rights reserved. 4-33

4.8.11 Slave select signals

Each ASB slave in the system has a DSEL select input signal. This signal indicates that
the slave is responsible for supplying a transfer response and that a data transfer is
required. The signal name DSELx is used to indicate the DSEL signal to slave x.

There is one DSELx signal for each slave on the ASB and these signals are generated
by the decoder. Only one DSELx signal will be active during a transfer and there may
be cycles when no DSELx signal is active, such as during ADDRESS-ONLY transfers.

DSELx changes during the BCLK HIGH phase before the start of a transfer and
remains valid during the transfer. It will change for the next transfer in the BCLK
HIGH phase following a transfer response with BWAIT LOW.

When designing a system there are two options for the implementation of an ASB
decoder:

• Decoder with decode cycles

• Decoder without decode cycles on page 4-34.

This choice is fixed at the design stage and will be based on a timing analysis of the
system. In general, a system that is operating up to the maximum speed of the processor
will require DECODE cycles. It is only those systems which operate at a frequency
significantly lower than the possible maximum that do not require DECODE cycles.

Decoder with decode cycles

In systems with a high clock frequency the critical path to decode the address and select
a slave within a single clock phase tends to limit the maximum bus clock speed. In such
systems the decoder can be used to automatically insert a wait state, or DECODE cycle,
at the start of every NONSEQUENTIAL transfer. This implementation allows
SEQUENTIAL transfers to continue to operate without the addition of a wait state, as
it is known that the address decoding critical path can be avoided on SEQUENTIAL
transfers, thus resulting in an overall improvement in bus bandwidth.

AMBA ASB

4-34 © Copyright ARM Limited 1999. All rights reserved. ARM IHI 0011A

For NONSEQUENTIAL transfers DSELx is asserted in the BCLK HIGH phase during
the DECODE cycle, as shown in Figure 4-18 below.

Figure 4-18 Select signal timing with decode cycle

• When DECODE cycles are implemented the timing of DSELx is dependent only
on BTRAN[1:0] and there is no timing dependency on the address and control
signals. This is because no DSELx signals are asserted for ADDRESS-ONLY
transfers.

• For a NONSEQUENTIAL transfer the DECODE cycle is inserted to provide an
entire phase for the address and control information to become valid.

• For SEQUENTIAL transfers the address and control information from the
previous cycle is used.

Decoder without decode cycles

In systems with a low clock frequency the address and control information will be valid
in time to decode the address and select a slave within a single clock phase. In such
systems a DECODE cycle is not required (see Figure 4-19).

BA [31:0]

BCLK

BTRAN[1:0] N-TRAN

Nonsequential
address

WAIT DONE

DSELx

Decode cycle

BWAIT
BERROR

BLAST

WAIT

Start of transfer End of transfer

AMBA ASB

ARM IHI 0011A © Copyright ARM Limited 1999. All rights reserved. 4-35

Figure 4-19 Select signal timing without decode cycle

The select signal becomes valid during the HIGH phase of BCLK before the transfer
commences and remains valid throughout the transfer, until the HIGH phase of the last
cycle.

When the decoder does not insert DECODE cycles, the timing of DSELx becomes
dependent on the timing of the address and control signals generated by the currently
granted bus master.

4.8.12 Transfer response

The transfer response signals are used by slave devices to indicate the status of a
transfer.

A valid transfer response must be provided during the LOW phase of BCLK. Whenever
a slave is selected (as indicated by DSELx being asserted) the slave must provide the
response. When no slave is selected, for example during an ADDRESS-ONLY transfer,
the response is provided by the decoder.

BA[31:0]

BCLK

BTRAN[1:0]

Transfer
type

Address

DONE

DSELx

BWAIT
BERROR

BLAST

WAIT

Start of transfer End of transfer

AMBA ASB

4-36 © Copyright ARM Limited 1999. All rights reserved. ARM IHI 0011A

Wait response

BWAIT is used to indicate when a transfer may complete. BWAIT is asserted HIGH
when the slave requires extra bus cycles to complete the current transfer. BWAIT LOW
indicates that the transfer may finish. Whether or not the transfer has completed
successfully can only be determined by examining the other transfer response signals.

Error response

An error condition is signalled by the BERROR signal. This may be used to indicate a
failed transfer, a transfer to an address where there is no slave device or a protection
error.

Many simple bus slaves will not implement error logic and will therefore have a fixed
response of BERROR LOW.

BERROR is also used in conjunction with BLAST to indicate a RETRACT operation.
When both these signals are HIGH this indicates that a bus RETRACT is required.

Last response

BLAST is used to signal if the current transfer must be the last of a burst. This would
typically be used to prevent a burst from continuing over a page boundary or other burst
length limit.

BLAST is used by the decoder to make sure that the following transfer has the same
characteristics as a NONSEQUENTIAL type transfer, rather than a burst transfer.
Typically this involves ensuring there is adequate time to perform a new address
decode.

Many bus slave devices will be able to accept any number of burst accesses and these
slaves will have a fixed response of BLAST LOW.

BLAST is also used in conjunction with BERROR to indicate a RETRACT operation.
When both these signals are HIGH this indicates that a bus RETRACT is required.

Bus retract

Slaves that cannot guarantee to complete transfers in a small number of wait states can
potentially block the bus and stop higher priority transfers occurring. To prevent such
slaves impacting the overall system latency a RETRACT mechanism is provided which
allows a slave to indicate that a transfer is unable to complete at present, but the
operation should be retried until it is able to complete successfully.

AMBA ASB

ARM IHI 0011A © Copyright ARM Limited 1999. All rights reserved. 4-37

A RETRACT is performed in a two stage process, as shown in Figure 4-20.

Figure 4-20 Retract operation

• First the slave responds with BWAIT, BLAST and BERROR all HIGH, which
indicates that a RETRACT is to occur and the transfer will finish in the next bus
cycle.

• In the second cycle the transfer response is BWAIT LOW, BLAST and
BERROR both HIGH. This indicates that the transfer has RETRACTed and that
the bus is free to be used.

Basic slaves, which have a guaranteed completion time, do not need to support the bus
RETRACT mechanism.

BD[31:0]

BA[31:0]

BCLK

Address

Current transfer

BERROR

BLAST

BWAIT

Next transfer

Retract next cycle Retract

AMBA ASB

4-38 © Copyright ARM Limited 1999. All rights reserved. ARM IHI 0011A

Response combinations

Table 4-5 shows the combinations of the three slave transfer response signals.

To ensure that the bus remains synchronized, a transfer response must be driven every
cycle. During bus transfers, when a slave is selected and its appropriate DSELx signal
is asserted, the slave is responsible for driving the transfer response signals.

The bus decoder is responsible for driving the transfer response signals during:

• ADDRESS-ONLY transfers

• DECODE cycles

• transfers to an address space where no slave is defined

• transfers to protected areas, when the access permissions are not met

• unaligned transfers which are not supported by the memory system.

Table 4-5 Transfer response combinations

BWAIT BLAST BERROR Status Description

0 0 0 DONE Complete, transfer successful

0 0 1 ERROR Complete, transfer error

0 1 0 LAST Complete, cannot continue with burst

0 1 1 RETRACT Complete, bus RETRACT

1 0 0 WAIT Incomplete, insert wait cycle

1 0 1 - Reserved

1 1 0 - Reserved

1 1 1 RETNEXT Bus RETRACT next cycle

AMBA ASB

ARM IHI 0011A © Copyright ARM Limited 1999. All rights reserved. 4-39

Transfer response timing

The transfer response signals must be set up valid before the rising edge of BCLK (see
Figure 4-20).

Figure 4-21 Transfer response signal timing

The signals are not driven during the HIGH phase of BCLK to allow an entire phase of
turnaround between signal drivers.

BA[31:0]

BCLK

BTRAN[1:0]

BD[31:0]

BWAIT

BLAST

BERROR

Data

Address

Transfer
type

AMBA ASB

4-40 © Copyright ARM Limited 1999. All rights reserved. ARM IHI 0011A

4.8.13 Data bus

The bidirectional data bus, BD[31:0], is used to transfer data between bus masters and
slaves. The size and direction of the transfer is given by the control signals, as described
in Address and control information on page 4-27.

The data bus must not be driven during the first BCLK LOW phase of a
NONSEQUENTIAL transfer. It may be driven, by the appropriate master or slave, at
all other times except reset.

During a write transfer:

• the master drives the data bus during all phases of the transfer, except the first
BCLK LOW phase of a NONSEQUENTIAL transfer

• the slave does not drive the bus.

During a read transfer:

• The master does not drive the data bus.

• The slave must drive the data bus during the last BCLK HIGH phase of the
transfer. For the rest of the transfer, the slave may drive the data bus or leave it
tristate, with the provision that it is not driven during the first BCLK LOW phase
of a NONSEQUENTIAL transfer.

The following diagrams show some examples of how the data bus is driven.

AMBA ASB

ARM IHI 0011A © Copyright ARM Limited 1999. All rights reserved. 4-41

Figure 4-22 shows an example of a NONSEQUENTIAL write transfer.

Figure 4-22 Nonsequential write transfer

The data bus is driven by the bus master, except for the BCLK LOW phase of the first
cycle. Not driving the data bus at the start of NONSEQUENTIAL transfers provides a
full phase of turnaround between different data bus drivers.

BA[31:0]

BCLK

BTRAN[1:0]

BWRITE

Address

N-TRAN

BD[31:0] Data

AMBA ASB

4-42 © Copyright ARM Limited 1999. All rights reserved. ARM IHI 0011A

When a write transfer is extended using BWAIT, the data remains valid through the
BCLK LOW phase of the extra cycles that are required to complete the transfer, as
shown in Figure 4-23.

Figure 4-23 Extended write transfer

BD[31:0]

BA[31:0]

BCLK

Address

BWAIT

BWRITE

BTRAN[1:0] N-TRAN

Data

AMBA ASB

ARM IHI 0011A © Copyright ARM Limited 1999. All rights reserved. 4-43

For SEQUENTIAL transfers the bus master may drive data during the LOW phase of
BCLK at the start of the transfer, as shown in Figure 4-24. This is permitted as a phase
of turnaround is not required for SEQUENTIAL transfers.

Figure 4-24 Sequential write transfer

BD[31:0]

BA[31:0]

BCLK

Address

BWRITE

BTRAN[1:0] S-TRAN

Data

AMBA ASB

4-44 © Copyright ARM Limited 1999. All rights reserved. ARM IHI 0011A

During read cycles the slave drives the data bus and, as in the write cycle case, for
NONSEQUENTIAL transfers the data bus is not driven in the BCLK LOW phase of
the first cycle (see Figure 4-25). The bus slave may then drive the bus throughout the
rest of the transfer.

Figure 4-25 Read transfer

There is no requirement for the slave to drive the data bus throughout the transfer. The
only requirement is that the data is driven such that it is valid by the end of the last
BCLK HIGH phase of the transfer.

4.8.14 Arbitration signals

AREQx - Bus request

AREQx is the request signal from a master to the arbiter which indicates that the master
requires the bus. Each master has an AREQx signal, which changes during the HIGH
phase of BCLK.

AGNTx - Bus grant

The grant signal from the arbiter to a bus master indicates that the bus master is
currently the highest priority master requesting the bus. There is an AGNTx signal for
each bus master in the system.

BD[31:0]

BA[31:0]

BCLK

Address

BWRITE

BTRAN[1:0]
Transfer

type

Data

AMBA ASB

ARM IHI 0011A © Copyright ARM Limited 1999. All rights reserved. 4-45

It is important to note that AGNTx does not indicate which master is currently granted
the bus. Instead, it shows which master is currently the highest priority and at the
completion of a transfer, as indicated by BWAIT LOW, the master which has AGNTx
asserted is granted the bus.

AGNTx is changed by the arbiter during the LOW phase of BCLK and remains valid
through the HIGH phase.

When AGNTx is HIGH, the master must:

• drive the BTRAN signals during BCLK HIGH

• become granted when BWAIT is LOW.

BLOK - Bus lock

BLOK is the shared bus lock signal. This signal indicates the following transfer is
indivisible from the current transfers and no other bus master should be given access to
the bus.

A master must always drive a valid level on the BLOK signal when granted the bus,
even if the master is not performing any transfers. This is necessary to ensure the
arbitration process can continue.

If BLOK is LOW the arbiter will grant the highest priority master requesting the bus.

If BLOK is HIGH the arbiter will keep the same master granted.

BLOK is sampled by the arbiter during the LOW phase of BCLK and it must be valid
such that the arbiter can generate valid AGNTx outputs before the rising edge of
BCLK. BLOK is ignored by the arbiter during the bus master handover cycle.

AMBA ASB

4-46 © Copyright ARM Limited 1999. All rights reserved. ARM IHI 0011A

4.9 About the ASB AMBA components

This section describes each of the elements in an AMBA system and provides the
generic timing parameters that are required to analyze an ASB-based AMBA design.

The following notation is used for the timing parameters:

• Tis - input setup time

• Tih - input hold time

• Tov - output valid time

• Toh - output hold time.

Unless otherwise stated, the timing parameters apply to both the rising and falling edges
of the signal. Tristate enable and disable times are not explicitly specified. All tristate
disable times must be less than a phase of BCLK to prevent a bus clash occurring. In
certain cases the tristate enable time may need to be factored in to the output valid time
if the enabling of the tristate driver is the dominant factor.

AMBA ASB

ARM IHI 0011A © Copyright ARM Limited 1999. All rights reserved. 4-47

4.10 ASB bus slave

An ASB bus slave responds to transfers initiated by bus masters within the system. The
slave uses a DSEL select signal from the decoder to determine when it should respond
to a bus transfer. All other signals required for the transfer, such as the address and
control information, will be generated by the bus master.

The decoder greatly simplifies the slave interface and removes the need for the slave to
understand the different types of transfer that may occur on the bus.

4.10.1 Interface diagram

Figure 4-26 shows an ASB bus slave interface.

Figure 4-26 ASB bus slave interface

4.10.2 Bus slave interface description

The bus slave interface is described in terms of:

• Transfer response

• Data on page 4-48.

Transfer response

A slave must provide a transfer response in the LOW phase of BCLK when DSEL is
asserted. Using the BWAIT, BERROR and BLAST signals one of the following
responses must be generated.

WAIT The transfer must be extended before it can complete.

BD[31:0] Data

Transfer
response

BWAIT

BERROR

BLAST

ASB
slave

BA[31:0]

BnRES

BCLK

DSEL

BSIZE[1:0]

Reset

Address
and

control

Select

BWRITE

Clock

AMBA ASB

4-48 © Copyright ARM Limited 1999. All rights reserved. ARM IHI 0011A

DONE The transfer has completed successfully.

LAST The transfer has completed successfully, but the slave is unable to
accept further burst transfers or a memory boundary has been
reached.

ERROR The transfer has not completed successfully. The error condition
will be signalled to the bus master so that it is aware the transfer
has not completed correctly.

RETRACT The transfer has not yet completed, so the bus master should retry
the transfer. The RETRACT response is used by a slave to prevent
the bus from being locked up by a transfer which may take many
cycles to complete.

Many slaves will only use the WAIT and DONE responses and in this case, when a
transfer response is supplied, both BERROR and BLAST will be LOW.

When the slave is not selected, as indicated by DSEL LOW, the transfer response
signals must be tristate. The response signals must also be tristate during reset.

Data

The slave interface is implemented as a simple state machine, operating from the falling
edge of the clock to determine when data transfer can occur. During reset the state
machine enters the NOT_SELECTED state (see Figure 4-27).

Figure 4-27 ASB slave bus interface state machine

For write transfers the slave samples the data on the falling edge of the clock when in
the SELECTED state. If required, the slave may extend the transfer using the transfer
response signals described above.

For read transfers the slave must drive the data bus during the last clock HIGH phase of
the transfer.

If the transfer is extended, by the insertion of wait cycles, then the slave may either drive
the data bus during the additional cycles of the transfer, or alternatively it may leave the
data bus tristate until the last phase of the transfer.

NOT_SELECTED SELECTED

DSEL

!DSEL

AMBA ASB

ARM IHI 0011A © Copyright ARM Limited 1999. All rights reserved. 4-49

To avoid the slave having to determine whether the transfer is SEQUENTIAL or
NONSEQUENTIAL it is usually simpler to design a slave which does not drive the data
bus during the first phase of any transfer.

During reset or when the slave is NOT_SELECTED the data bus must be tristate.

4.10.3 Timing diagrams

The timing parameters related to an access to an ASB bus slave are shown in
Figure 4-28.

Figure 4-28 ASB slave transfer

Address

Data

BWAIT
BERROR

BLAST

BD[31:0]
Write

BA[31:0]

DSEL

BnRES

BCLK

clklT clkhT

ihnresT isnresT

isdselT
ihdselT

Control
BWRITE

BSIZE[1:0]

isaT ihaT

isctlT ihctlT

Data
BD[31:0]

Read

ihdwT
isdwT

ohdrT
ovdrT

ovrespT
ohrespT

AMBA ASB

4-50 © Copyright ARM Limited 1999. All rights reserved. ARM IHI 0011A

4.10.4 Timing parameters

The timing parameters related to an ASB bus slave are given for input signals in
Table 4-6 and for output signals in Table 4-7. Bidirectional signals can be found in both
tables.

Table 4-6 ASB slave input parameters

Parameter Description

Tclkl BCLK LOW time

Tclkh BCLK HIGH time

Tisnres BnRES de-asserted setup to rising BCLK

Tihnres BnRES de-asserted hold after falling BCLK

Tisdsel DSEL setup to falling BCLK

Tihdsel DSEL hold after rising BCLK

Tisa BA[31:0] setup to falling BCLK

Tiha BA[31:0] hold after rising BCLK

Tisctl BWRITE and BSIZE[1:0] setup to falling BCLK

Tihctl BWRITE and BSIZE[1:0] hold after rising BCLK

Tisdw For write transfers, BD[31:0] setup to falling BCLK

Tihdw For write transfers, BD[31:0] hold after falling BCLK

Table 4-7 ASB slave output parameters

Parameter Description

Tovresp BWAIT, BERROR and BLAST valid after falling BCLK

Tohresp BWAIT, BERROR and BLAST hold after rising BCLK

Tovdr For read transfers, BD[31:0] valid after rising BCLK

Tohdr For read transfers, BD[31:0] hold after falling BCLK

AMBA ASB

ARM IHI 0011A © Copyright ARM Limited 1999. All rights reserved. 4-51

Note

If the bus slave is designed such that the decoder, address and control signals are all
sampled on the falling edge of BCLK then an entire phase of input hold time is
guaranteed by the bus protocol.

You can ensure that an entire phase of hold time is provided on the data bus by inserting
an extra wait state into the transfer.

AMBA ASB

4-52 © Copyright ARM Limited 1999. All rights reserved. ARM IHI 0011A

4.11 ASB bus master

An ASB bus master has the most complex bus interface in an AMBA system. Typically
an AMBA system designer would use predesigned bus masters and therefore would not
need to be concerned with the detail of the bus master interface.

A bus master interface may also include a slave interface, either for test or for
programming the operation of the bus master. In such cases a number of the interface
signals will become shared between the master interface and slave interface.

4.11.1 Interface diagram

The interface diagram of an ASB bus master shows the main signal groups.

Figure 4-29 ASB bus master interface diagram

4.11.2 Bus master interface description

The bus master interface consists of two state machines:

• the first state machine determines if the master is currently granted the bus

• the second, more complex, state machine is used to control the bus interface of
the master.

BD[31:0] Data

Address
and
control

BWRITE

BSIZE[1:0]

BPROT[1:0]

ASB
master

BA[31:0]

BLAST

BnRES

BCLK

AGNT

BERROR

Reset

Transfer
response

Arbiter
grant

AREQ

BLOK

BTRAN[1:0] Transfer type

Arbiter

BWAIT

Clock

AMBA ASB

ARM IHI 0011A © Copyright ARM Limited 1999. All rights reserved. 4-53

GRANTED state machine

The GRANTED state machine is used to determine whether or not the bus master has
been granted the bus. It is synchronized to the rising edge of BCLK and has only two
states, GRANTED and NOT_GRANTED. The state diagram is shown in Figure 4-30.

Figure 4-30 Bus master granted state machine

The output from the state machine is the GRANTED signal, which is used in the main
bus master state machine.

Note

The AGNT signal may be asserted for a number of clock cycles, but it is only when
AGNT is asserted and BWAIT is LOW that the bus master actually becomes
GRANTED.

An important design consideration is that the state machine may be asynchronously
reset into either state depending on the value of the AGNT signal. During reset one bus
master in the system is set as the default bus master, as indicated by AGNT being
asserted during reset, and will be reset into the GRANTED state. All other bus masters
will be reset into the NOT_GRANTED state.

NOT_GRANTED
(GRANTED = 0)

GRANTED
(GRANTED = 1)

!BWAIT & AGNT

!BWAIT & !AGNT

BWAIT + AGNTBWAIT + !AGNT

AMBA ASB

4-54 © Copyright ARM Limited 1999. All rights reserved. ARM IHI 0011A

4.11.3 Bus interface state machine

The main bus interface state machine is falling edge triggered and contains six states.
The entire state diagram, shown in Figure 4-32, is quite complex but can be considered
in four quadrants as shown in Figure 4-31:

Figure 4-31 Bus interface state machine quadrants

The TRANSFER REQUEST GRANTED quadrant contains three states, which handle
bus turn around and the RETRACT operation.

The two internal bus master signals, GRANTED and REQUEST, control the majority
of the transitions around the state diagram (see Figure 4-32):

• GRANTED is generated from the simpler state machine described above

• REQUEST is generated directly by the bus master.

REQUEST is asserted HIGH when the bus master requires a transfer on the bus and is
LOW when the bus master does not need access to the bus.

The only time when a transition around the state diagram is not controlled by
GRANTED and REQUEST is when the bus master is in the ACTIVE state. In this state
the transition to the next state is determined by the transfer response that is received.
WAIT, DONE, LAST, ERROR and RETNEXT shown in the diagram correspond to the
encodings of the transfer response signals.

NO TRANSFER
REQUEST
GRANTED

TRANSFER
REQUEST
GRANTED

NO TRANSFER
REQUEST

NOT GRANTED

TRANSFER
REQUEST

NOT GRANTED

AMBA ASB

ARM IHI 0011A © Copyright ARM Limited 1999. All rights reserved. 4-55

Figure 4-32 Bus master main state machine

Note that the state diagram assumes that once the bus master has made a request for a
transfer, as indicated by REQUEST, then REQUEST will remain asserted until the bus
master has performed a transfer.

As the main bus master state machine is operating from the falling edge of the clock it
is necessary to use latched versions of the transfer response signals BWAIT, BERROR
and BLAST to control the exit from the ACTIVE state.

The reset conditions are not shown on the state diagram and, in a similar manner to the
granted state machine, the main bus master state machine has a complex reset term. If
AGNT is asserted during reset, when BnRES is LOW, the bus master is the default bus
master and enters the BUSIDLE state. However, if AGNT is not asserted during reset
then the bus master enters the IDLE state.

HANDOVER

TRANSFER REQUEST
NOT GRANTED

ACTIVE RETRACT

HOLD

NO TRANSFER REQUEST
NOT GRANTED

TRANSFER REQUEST
GRANTED

NO TRANSFER REQUEST
GRANTED

IDLE

BUSIDLE

DONE +
LAST +
ERROR

GRANTED & REQUEST

!GRANTED & REQUEST

GRANTED & !REQUEST

!GRANTED & !REQUEST

GRANTED & REQUEST

!GRANTED &
REQUEST

GRANTED &
!REQUEST

!GRANTED &
!REQUEST

GRANTED &
REQUEST

!GRANTED & REQUEST

GRANTED &
!REQUEST

!GRANTED &
!REQUEST !GRANTED

GRANTED

!GRANTED

GRANTED

GRANTED

!GRANTED

RETNEXT

WAIT

AMBA ASB

4-56 © Copyright ARM Limited 1999. All rights reserved. ARM IHI 0011A

Table 4-8 indicates the actions that must occur in each state.

BTRAN[1:0] tristate drivers are enabled when AGNT and BCLK are both HIGH.

Master address bus enable is used to control the tristate enable of BA[31:0], BWRITE,
BSIZE[1:0], BPROT[1:0] and BLOK. Master data bus enable is used to control the
tristate enable of BD[31:0].

Table 4-8 Actions that must occur in each state

Name Description Actions

IDLE The master does not
require the bus and is not
granted.

Internal BTRAN is ADDRESS-ONLY.
Master clock is enabled.
Master address bus is tristate.
Master data bus is tristate.

BUSIDLE The master does not
require the bus, but has
been granted anyway.

Internal BTRAN as indicated by master.
Master clock is enabled.
Master address bus enable is generated from
GRANTED signal.
Master data bus is tristate.

HOLD The master requires the
bus, but has not been
granted.

Internal BTRAN is ADDRESS-ONLY.
Master clock is disabled.
Master address bus is tristate.
Master data bus is tristate.

HANDOVER This state provides bus
turnaround when changing
between different bus
masters.

Internal BTRAN is SEQUENTIAL.
Master clock is disabled.
Master address bus enable is generated from
GRANTED signal.
Master data bus is tristate.

ACTIVE Active state when data
transfers occur.
Exiting this state is
dependent on the transfer
response.

Internal BTRAN as indicated by master.
Master clock enable is derived from BWAIT
Master address bus enable is generated from
GRANTED signal.
Master data bus enable is enabled if a write
transaction.

RETRACT Retract state, where the
rest of the elements in the
system see the transfer
finish, but the bus master
is not advanced.

Internal BTRAN is ADDRESS-ONLY.
Master clock is disabled.
Master address bus enable is generated from
GRANTED signal.
Master data bus enable is enabled if a write
transaction.

AMBA ASB

ARM IHI 0011A © Copyright ARM Limited 1999. All rights reserved. 4-57

4.11.4 Bus master timing diagrams

The following diagrams show the timing parameters related to an ASB bus master
operating in an AMBA system:

• Figure 4-33 shows an ASB bus master nonsequential transfer

• Figure 4-34 shows an ASB bus master sequential transfer on page 4-58

• Figure 4-35 shows an ASB master address-only transfer on page 4-59

• Figure 4-36 shows ASB bus master arbitration and reset signals on page 4-60.

Figure 4-33 ASB bus master nonsequential transfer

For the NONSEQUENTIAL transfer, shown in Figure 4-33, the address and control
signals become valid in the BCLK HIGH phase before the start of the transfer. An
important feature of the AMBA protocol is to allow for poor output valid times on
NONSEQUENTIAL transfers, which is provided through the automatic insertion of a
wait state at the start of every NONSEQUENTIAL transfer by the decoder.

ovanT

ovtrT
ohtrT

N-TRAN

Nonsequential
address

Nonsequential
control

Data

Data

BWAIT
BERROR

BLAST

BD[31:0]
Read

BD[31:0]
Write

BWRITE
BSIZE[1:0]

BPROT[1:0]

BA[31:0]
Nonsequential

BTRAN[1:0]

BCLK

ohaT

ohctlTovctlnT

ohdwTovdwnT

ihdrTisdrT

Response

Start of transfer End of transfer

ihrespT
isrespT

AMBA ASB

4-58 © Copyright ARM Limited 1999. All rights reserved. ARM IHI 0011A

Figure 4-34 ASB bus master sequential transfer

A SEQUENTIAL transfer has different timing parameters for the address and control
signal valid times (see Figure 4-34). In a typical bus master, the output valid times for
SEQUENTIAL transfers will be far better than for NONSEQUENTIAL transfers. The
output hold times for address, control and data are identical and independent of the
transfer type.

The other difference between the SEQUENTIAL and NONSEQUENTIAL transfers is
that during a SEQUENTIAL transfer the data may be driven during the first phase of
the transfer and hence the data valid parameter is specified from the falling edge of
BCLK.

ovasT

ovtrT
ohtrT

S-TRAN

Sequential
address

Data

Data

BWAIT
BERROR

BLAST

BD[31:0]
Read

BD[31:0]
Write

BWRITE
BSIZE[1:0]

BPROT[1:0]

BA[31:0]
Sequential

BTRAN[1:0]

BCLK

ohaT

ohdwTovdwsT

ihdrTisdrT

Response

Start of transfer End of transfer

ihrespT
isrespT

Sequential
control

ohctlT

AMBA ASB

ARM IHI 0011A © Copyright ARM Limited 1999. All rights reserved. 4-59

For an ADDRESS-ONLY transfer the address and control signals may be driven in the
clock HIGH phase before the start of the transfer, or in the case of bus master handover
may only be driven during the clock LOW phase of the transfer itself (see Figure 4-35).
The address and control valid timing parameters are only relevant when the ADDRESS-
ONLY transfer is followed immediately by a SEQUENTIAL transfer and in this case
the address and control signals must be driven such that they are valid during the LOW
phase of the ADDRESS-ONLY transfer, which in turn means they are valid throughout
the clock HIGH phase that precedes the SEQUENTIAL transfer.

Figure 4-35 ASB master address-only transfer

ovtrT
ohtrT

A-TRAN

Address

BWAIT
BERROR

BLAST

BWRITE
BSIZE[1:0]

BPROT[1:0]
BLOK

BA[31:0]
address-only

BTRAN[1:0]

BCLK

DONE

Start of transfer End of transfer

ihrespT
isrespT

Control

ovaaT

ovctlaT

AMBA ASB

4-60 © Copyright ARM Limited 1999. All rights reserved. ARM IHI 0011A

Figure 4-36 shows ASB bus master arbitration and reset signals.

Figure 4-36 ASB bus master arbitration and reset signals

The BnRES signal may be asserted asynchronously, so there is no setup and hold
parameter relating to the assertion of the signal. The AREQ signal, which is an output
from the bus master, changes during the HIGH clock phase and the AGNT signal,
which is returned from the arbiter changes during the LOW clock phase.

4.11.5 Timing parameters

The timing parameters related to an ASB bus master operating in an AMBA system are
also shown in textual form in the following two tables. Table 4-9 details the input
signals. Table 4-10 details output signals. Bidirectional signals can be found in both
tables.

AGNTx

BnRES

BCLK

ihnresT isnresT

isagntT ihagntT

AREQx

ovareqT ohareqT

BLOK

ovlokT ohlokT

Table 4-9 Bus master input timing parameters

Parameter Description

Tclkl BCLK LOW time

Tclkh BCLK HIGH time

Tisnres BnRES de-asserted setup to rising BCLK

AMBA ASB

ARM IHI 0011A © Copyright ARM Limited 1999. All rights reserved. 4-61

Tihnres BnRES de-asserted hold after falling BCLK

Tisresp BWAIT, BERROR and BLAST setup to rising BCLK

Tihresp BWAIT, BERROR and BLAST hold after rising BCLK

Tisdr For read transfers, BD[31:0] setup to falling BCLK

Tihdr For read transfers, BD[31:0] hold after falling BCLK

Tisagnt AGNT setup to rising BCLK

Tihagnt AGNT hold after falling BCLK

Table 4-10 Bus master output timing parameters

Parameter Description

Tovtr BTRAN valid after rising BCLK

Tohtr BTRAN hold after falling BCLK

Tovan For NONSEQUENTIAL transfers, BA[31:0] valid after rising BCLK

Tovas For SEQUENTIAL transfers, BA[31:0] valid after rising BCLK

Tovaa For ADDRESS-ONLY transfers, BA[31:0] valid after falling BCLK

Toha BA[31:0] hold after rising BCLK

Tovctln For NONSEQUENTIAL transfers, BWRITE, BSIZE[1:0] and
BPROT[1:0] valid after rising BCLK

Tovctla For ADDRESS-ONLY transfers, BWRITE, BSIZE[1:0] and BPROT[1:0]
valid after falling BCLK

Tohctl BWRITE, BSIZE[1:0] and BPROT[1:0] hold after rising BCLK

Tovdwn For NONSEQUENTIAL write transfers, BD[31:0] valid after rising BCLK

Tovdws For SEQUENTIAL write transfers, BD[31:0] valid after falling BCLK

Tohdw For write transfers, BD[31:0] hold after falling BCLK

Table 4-9 Bus master input timing parameters (continued)

Parameter Description

AMBA ASB

4-62 © Copyright ARM Limited 1999. All rights reserved. ARM IHI 0011A

Tovlok BLOK valid after rising BCLK

Tohlok BLOK hold after rising BCLK

Tovareq AREQ valid after rising BCLK

Tohareq AREQ hold after rising BCLK

Table 4-10 Bus master output timing parameters (continued)

Parameter Description

AMBA ASB

ARM IHI 0011A © Copyright ARM Limited 1999. All rights reserved. 4-63

4.12 ASB decoder

The decoder in an AMBA system is used to perform a centralized address decoding
function, which gives two main advantages:

• It improves the portability of peripherals, by making them independent of the
system memory map.

• It simplifies the design of bus slaves, by centralizing the address decoding and
bus control functions.

The three main tasks of the decoder are:

• address decoder

• default transfer response

• protection unit.

An ASB decoder generates a select signal for each slave on the ASB bus and, under
certain circumstances, will not select any slaves and provide the transaction response
itself.

The decoder greatly simplifies the slave interface and removes the need for the slave to
understand the different types of transfer that may occur on the bus.

An important feature of the decoder is that it is able to improve the performance of a
system by providing DECODE cycles for address decoding. As the decoder is able to
recognize if the transfer is SEQUENTIAL or NONSEQUENTIAL it is a simple task for
the decoder to only add a DECODE cycle when required.

The decoder actually helps to significantly improve the system performance. In a non-
AMBA system the critical path of, for example, a read transfer would be as follows:

1. Address out from master.

2. Address decode to select slave.

3. Data out and response from slave back to bus master.

However, in an AMBA system it is possible to remove the middle stage whenever the
bus master is performing a SEQUENTIAL transfer, because it is known that the slave
that is selected will be the same as the previous transfer. The decoder can use this fact
to improve the system performance by only inserting a wait state for address decoding
when needed, which is for NONSEQUENTIAL transfers. This is known as inserting a
DECODE cycle.

In designs where the clock frequency is low enough that an additional wait state is not
required for address decoding, then the role of the decoder is simplified.

AMBA ASB

4-64 © Copyright ARM Limited 1999. All rights reserved. ARM IHI 0011A

The decoder is also used to provide a number of bus maintenance functions. Firstly, the
decoder can act as a simple protection unit, which can issue an ERROR response to a
bus master which attempts to access an illegal or protected area of the memory map.
The decoder also provides a transfer response during ADDRESS-ONLY transfers,
when no slave is selected.

4.12.1 Interface diagram

Figure 4-37 shows an ASB decoder.

Figure 4-37 ASB decoder interface diagram

4.12.2 Decoder description

There are two possible implementations of the decoder, depending on the performance
requirements of the system design:

• The normal implementation of a decoder will include the insertion of DECODE
cycles on NONSEQUENTIAL transfers and to break up burst transfers over
memory boundaries.

• In some system designs, typically with a low clock frequency, the DECODE
cycle will not be required and hence a simpler decoder may be implemented.

Address
and

control

BWRITE

BSIZE[1:0]

BPROT[1:0]

ASB
decoder

BA[31:0]

BLAST

BnRES

BCLK

BERRORReset
Transfer
response

DSEL1

DSELn

BTRAN[1:0]Transfer type

Selects

BWAIT

DSEL1

Clock

AMBA ASB

ARM IHI 0011A © Copyright ARM Limited 1999. All rights reserved. 4-65

With decode cycles

The decoder is implemented as a state machine which operates from the falling edge of
the clock and has four states (see Figure 4-38). During reset the state machine should
enter the ADDRONLY state.

Figure 4-38 Decoder state machine with decode

ADDRONLY DECODE

DecError

N-TRAN +
S-TRAN & DecLast

A-TRAN

ERROR

S-TRAN & !DecLast

SLAVESEL

WAIT + RETNEXT +
S-TRAN & (DONE + ERROR + RETRACT) & !DecLast

A-TRAN

S-TRAN &
DecError

N-TRAN

!DecError
S-TRAN &
!DecError

A-TRAN &
!WAIT

N-TRAN & !WAIT +
S-TRAN & (LAST + DecLast)

!WAIT = DONE + LAST + ERROR + RETRACT

AMBA ASB

4-66 © Copyright ARM Limited 1999. All rights reserved. ARM IHI 0011A

Transitions around the state machine are controlled by the transfer type for the next
transfer, the transfer response from the current transfer and two internal decoder signals,
DecLast and DecError. The WAIT, DONE, LAST, ERROR, RETNEXT and
RETRACT shown on the state diagram correspond to the encodings of the transfer
response signals.

DecLast is generated by the decoder when it detects that a SEQUENTIAL transfer is
about to cross a memory boundary and is used in combination with the external BLAST
signal to force the address to be decoded, even on SEQUENTIAL transfers.

DecError is another decoder internal signal and is generated when the decoder detects
that:

• there are no slaves present at the address of the transfer

• the transfer is to a protected region of memory

• the alignment of the transfer is not supported by the memory system.

The decoder performs the following functions:

• In the ADDRONLY state:

• speculatively decodes the address

• provides a DONE transfer response during the BCLK LOW phase

• asserts DSELx during the BCLK HIGH phase if the transfer type for the
next transfer is S-TRAN and the address is valid.

• In the DECODE state:

• decodes the address

• provides a WAIT transfer response during the BCLK LOW phase

• asserts DSELx during the BCLK HIGH phase if the address is valid.

• In the SLAVESEL state:

• the transfer response is driven by the selected slave

• keeps DSELx asserted while the transfer is waited, or if the next transfer is
SEQUENTIAL and no LAST condition is detected.

• In the ERROR state:

• provides an ERROR transfer response during the BCLK LOW phase.

AMBA ASB

ARM IHI 0011A © Copyright ARM Limited 1999. All rights reserved. 4-67

Without decode cycles

A decoder which does not implement decode cycles has the DECODE state removed.
This simplifies the state diagram, as shown in Figure 4-39.

Figure 4-39 Decoder state machine without decode

ADDRONLY

A-TRAN

ERROR

(N-TRAN + S-TRAN)
& DecError

SLAVESEL

WAIT + RETNEXT + ((N-TRAN + S-TRAN) & !DecError)

A-TRAN

(N-TRAN + S-TRAN)
& DecError

(N-TRAN + S-TRAN)
& !DecError

A-TRAN &
!WAIT

(N-TRAN + S-TRAN)
& !WAIT & DecError

!WAIT = DONE + LAST + ERROR + RETRACT

(N-TRAN + S-TRAN)
& !DecError

AMBA ASB

4-68 © Copyright ARM Limited 1999. All rights reserved. ARM IHI 0011A

4.12.3 Timing diagrams

The timing parameters for an ASB decoder with DECODE cycles are shown in Figure
4-40. The parameters for a decoder without DECODE cycles are shown in Figure 4-41.
The main difference between the two diagrams is that when DECODE cycles are not
inserted then the timing of the DSEL signal becomes dependent on the address and
control signal timing.

Figure 4-40 ASB decoder with decode cycles

BWAIT
BERROR

BLAST

BA[31:0]

DSEL

BnRES

BCLK

ihnresT isnresT

ovdselT
ohdselT

BTRAN[1:0]

istrT

ihtrT

ovrespT
ohrespT

BWRITE
BPROT[1:0]

Address

Control

Decoder
response

Slave
response

N-TRAN

isrespT

ihrespT

AMBA ASB

ARM IHI 0011A © Copyright ARM Limited 1999. All rights reserved. 4-69

Figure 4-41 ASB decoder without decode cycles

4.12.4 Timing parameters

The timing parameters related to an ASB decoder are given in the following tables:

• Table 4-11 is for input signals

• Table 4-12 is for output signals

• Table 4-13 is for combinatorially generated outputs.

BWAIT
BERROR

BLAST

BA[31:0]

DSEL

BnRES

BCLK

ihnresT isnresT

ohdselT

BTRAN[1:0]

istrT

ihtrT

BWRITE
BPROT [1:0]

Address

Control

Decoder
response

N-TRAN

isrespT

ihrespT

adselT
trdselT

ctldselT

AMBA ASB

4-70 © Copyright ARM Limited 1999. All rights reserved. ARM IHI 0011A

Table 4-11 ASB decoder input parameters

Parameter Description

Tclkl BCLK LOW time

Tclkh BCLK HIGH time

Tisnres BnRES de-asserted setup to rising BCLK

Tihnres BnRES de-asserted hold after falling BCLK

Tistr BTRAN setup to falling BCLK

Tihtr BTRAN hold after falling BCLK

Tisresp BWAIT, BERROR and BLAST setup to rising BCLK

Tihresp BWAIT, BERROR and BLAST hold after rising BCLK

Table 4-12 ASB decoder output parameters

Parameter Description

Tovresp BWAIT, BERROR and BLAST valid after falling BCLK

Tohresp BWAIT, BERROR and BLAST hold after rising BCLK

Tovdsel DSEL valid after rising BCLK

Tohdsel DSEL hold after rising BCLK

Table 4-13 ASB decoder combinatorial parameters

Parameter Description

Ttrdsel Delay from valid BTRAN to valid DSEL

Tadsel Delay from valid BA to valid DSEL

Tctldsel Delay from valid BWRITE and BPROT[1:0] to valid DSEL

AMBA ASB

ARM IHI 0011A © Copyright ARM Limited 1999. All rights reserved. 4-71

4.13 ASB arbiter

The role of the arbiter in an AMBA system is to control which master has access to the
bus. Every bus master has a two wire REQUEST and GRANT interface to the arbiter
and on every cycle the arbiter uses a prioritization scheme to decide which bus master
is currently the highest priority master requesting the bus.

A shared bus lock signal, BLOK, driven by the currently granted bus master is used to
indicate that the current transfer is indivisible from the following transfer and no other
master should be granted the bus.

The detail of the priority scheme is not specified and is defined for each application. It
is acceptable for the arbiter to use other signals, either AMBA or non-AMBA, to
influence the priority scheme that is in use.

4.13.1 Interface diagram

Figure 4-42 shows the signal interface of an ASB arbiter.

Figure 4-42 ASB arbiter interface diagram

4.13.2 Arbiter description

The bus can be re-arbitrated on every clock cycle. The arbiter samples all the request
signals, AREQx, on the falling edge of BCLK and during the LOW phase of BCLK
the arbiter asserts the appropriate AGNTx signal using the internal priority scheme and
the value of BLOK.

As the arbitration can change every cycle, it is possible that during an extended transfer,
the highest priority bus master may change several times before the transfer eventually
completes. The bus master that has AGNT asserted when the transfer completes will
become the next active bus master.

Arbiter
requests

AREQx3

BWAIT

BLOK

ASB
arbiter

BnRES

BCLK

Reset

AGNTx1

Arbiter
grants

AREQx2

AREQx1

Lock

Wait

AGNTx2

AGNTx3

Clock

AMBA ASB

4-72 © Copyright ARM Limited 1999. All rights reserved. ARM IHI 0011A

During bus master handover the BLOK signal is not driven and hence the arbiter must
assume that this signal is LOW.

The arbiter must retain a copy of which master is currently granted so it can:

• keep the current bus master granted if BLOK is asserted

• determine when the bus master changes, and so determine when there is a cycle
of bus master handover.

4.13.3 Timing diagrams

Figure 4-43 shows the arbiter timing parameters.

Figure 4-43 ASB arbiter parameters

BWAIT
BERROR

BLAST

AREQ

BnRES

BCLK

ihnresT isnresT

AGNT

isareqT ihareqT

ovagntT ohagntT

isrespT
ihrespT

BLOK

lokagntT

AMBA ASB

ARM IHI 0011A © Copyright ARM Limited 1999. All rights reserved. 4-73

4.13.4 Timing parameters

The timing parameters related to an ASB arbiter are given in the following tables:

• Table 4-14 is for input signals

• Table 4-15 is for output signals

• Table 4-16 is for combinatorially generated outputs.

Table 4-14 ASB arbiter input parameters

Parameter Description

Tclkl BCLK LOW time

Tclkh BCLK HIGH time

Tisnres BnRES de-asserted setup to rising BCLK

Tihnres BnRES de-asserted hold after falling BCLK

Tisareq AREQ setup to falling BCLK

Tihareq AREQ hold after rising BCLK

Tisresp BWAIT setup to rising BCLK

Tihresp BWAIT hold after rising BCLK

Table 4-15 ASB arbiter output parameters

Parameter Description

Tovagnt AGNT valid after falling BCLK

Tohagnt AGNT hold after falling BCLK

Table 4-16 ASB arbiter combinatorial parameters

Parameter Description

Tlokagnt Delay from valid BLOK to valid AGNT

AMBA ASB

4-74 © Copyright ARM Limited 1999. All rights reserved. ARM IHI 0011A

ARM IHI 0011A © Copyright ARM Limited 1999. All rights reserved. 5-1

Chapter 5
AMBA APB

This chapter introduces the Advanced Microcontroller Bus Architecture (AMBA)
Advanced Peripheral Bus (APB) specification in the following sections:

• About the AMBA APB on page 5-2

• APB specification on page 5-4

• About the APB AMBA components on page 5-7

• APB bridge on page 5-8

• APB slave on page 5-11

• Interfacing APB to AHB on page 5-14

• Interfacing APB to ASB on page 5-20

• Interfacing rev D APB peripherals to rev 2.0 APB on page 5-22.

AMBA APB

5-2 © Copyright ARM Limited 1999. All rights reserved. ARM IHI 0011A

5.1 About the AMBA APB

The Advanced Peripheral Bus (APB) is part of the Advanced Microcontroller Bus
Architecture (AMBA) hierarchy of buses and is optimized for minimal power
consumption and reduced interface complexity.

The AMBA APB should be used to interface to any peripherals which are low-
bandwidth and do not require the high performance of a pipelined bus interface.

The latest revision of the APB ensures that all signal transitions are only related to the
rising edge of the clock. This improvement means the APB peripherals can be
integrated easily into any design flow, with the following advantages:

• performance is improved at high-frequency operation

• performance is independent of the mark-space ratio of the clock

• static timing analysis is simplified by the use of a single clock edge

• no special considerations are required for automatic test insertion

• many Application-Specific Integrated Circuit (ASIC) libraries have a better
selection of rising edge registers

• easy integration with cycle based simulators.

These changes to the APB also make it simpler to interface it to the new Advanced
High-performance Bus (AHB).

AMBA APB

ARM IHI 0011A © Copyright ARM Limited 1999. All rights reserved. 5-3

5.1.1 A typical AMBA-based microcontroller

An AMBA-based microcontroller typically consists of a high-performance system
backbone bus, able to sustain the external memory bandwidth, on which the CPU and
other Direct Memory Access (DMA) devices reside, plus a bridge to a narrower APB
bus on which the lower bandwidth peripheral devices are located. Figure 5-1 shows the
APB in a typical AMBA system.

Figure 5-1 The APB in a typical AMBA system

A system bus that includes a Test Interface Controller (TIC) allows modular testing of
both system bus and APB modules.

Timer

High-bandwidth
on-chip RAM

B
R
I
D
G
E

High-performance
ARM processor

High-bandwidth
Memory Interface

AHB or ASB APB

PIO

UART

Keypad

APB bridge

DMA bus
master

* Low power
* Latched address and control
* Simple interface
* Suitable for many peripherals

AMBA Advanced Peripheral Bus (APB)

AMBA APB

5-4 © Copyright ARM Limited 1999. All rights reserved. ARM IHI 0011A

5.2 APB specification

The APB specification is described under the following headings:

• State diagram

• Write transfer on page 5-5

• Read transfer on page 5-6.

5.2.1 State diagram

The state diagram, shown in Figure 5-2, can be used to represent the activity of the
peripheral bus.

Figure 5-2 State diagram

Operation of the state machine is through the three states described below:

IDLE The default state for the peripheral bus.

SETUP When a transfer is required the bus moves into the SETUP state,
where the appropriate select signal, PSELx, is asserted. The bus
only remains in the SETUP state for one clock cycle and will
always move to the ENABLE state on the next rising edge of the
clock.

SETUP
PSELx = 1

PENABLE = 0

IDLE
PSELx = 0

PENABLE = 0

No transfer

Transfer

No transfer Transfer

ENABLE
PSELx = 1

PENABLE = 1

AMBA APB

ARM IHI 0011A © Copyright ARM Limited 1999. All rights reserved. 5-5

ENABLE In the ENABLE state the enable signal, PENABLE is asserted.
The address, write and select signals all remain stable during the
transition from the SETUP to ENABLE state.

The ENABLE state also only lasts for a single clock cycle and
after this state the bus will return to the IDLE state if no further
transfers are required. Alternatively, if another transfer is to
follow then the bus will move directly to the SETUP state.

It is acceptable for the address, write and select signals to glitch
during a transition from the ENABLE to SETUP states.

5.2.2 Write transfer

The basic write transfer is shown in Figure 5-3.

Figure 5-3 Write transfer

The write transfer starts with the address, write data, write signal and select signal all
changing after the rising edge of the clock. The first clock cycle of the transfer is called
the SETUP cycle. After the following clock edge the enable signal PENABLE is
asserted, and this indicates that the ENABLE cycle is taking place. The address, data
and control signals all remain valid throughout the ENABLE cycle. The transfer
completes at the end of this cycle.

The enable signal, PENABLE, will be deasserted at the end of the transfer. The select
signal will also go LOW, unless the transfer is to be immediately followed by another
transfer to the same peripheral.

In order to reduce power consumption the address signal and the write signal will not
change after a transfer until the next access occurs.

T1 T2 T3 T4 T5

PADDR

PWRITE

PSEL

PENABLE

PWDATA

Addr 1

Data 1

PCLK

AMBA APB

5-6 © Copyright ARM Limited 1999. All rights reserved. ARM IHI 0011A

The protocol only requires a clean transition on the enable signal. It is possible that in
the case of back to back transfers the select and write signals may glitch.

5.2.3 Read transfer

Figure 5-4 shows a read transfer.

Figure 5-4 Read transfer

The timing of the address, write, select and strobe signals are all the same as for the
write transfer. In the case of a read, the slave must provide the data during the ENABLE
cycle. The data is sampled on the rising edge of clock at the end of the ENABLE cycle.

T1 T2 T3 T4 T5

PADDR

PWRITE

PSEL

PENABLE

PRDATA

Addr 1

Data 1

AMBA APB

ARM IHI 0011A © Copyright ARM Limited 1999. All rights reserved. 5-7

5.3 About the APB AMBA components

The following notation is used for the timing parameters:

• Tis - input setup time

• Tih - input hold time

• Tov - output valid time

• Toh - output hold time.

AMBA APB

5-8 © Copyright ARM Limited 1999. All rights reserved. ARM IHI 0011A

5.4 APB bridge

The APB bridge is the only bus master on the AMBA APB. In addition, the APB bridge
is also a slave on the higher-level system bus.

5.4.1 Interface diagram

Figure 5-5 shows the APB signal interface of an APB bridge.

Figure 5-5 APB bridge interface diagram

5.4.2 APB bridge description

The bridge unit converts system bus transfers into APB transfers and performs the
following functions:

• Latches the address and holds it valid throughout the transfer.

• Decodes the address and generates a peripheral select, PSELx. Only one select
signal can be active during a transfer.

• Drives the data onto the APB for a write transfer.

• Drives the APB data onto the system bus for a read transfer.

• Generates a timing strobe, PENABLE, for the transfer.

Write data

Address
and
control

PWRITE

APB
bridge

PADDR

PRESETn

PCLK

Reset

System bus
slave interface

PSEL1

PENABLE Strobe

Selects

PSEL2

PSELn

PWDATA

PRDATARead data

Clock

AMBA APB

ARM IHI 0011A © Copyright ARM Limited 1999. All rights reserved. 5-9

5.4.3 Timing diagrams

The timing parameters for an APB bridge are shown in Figure 5-6.

Figure 5-6 APB bridge transfer

ovpaT

Address

Data

DataPRDATA

PWDATA

PADDR

PENABLE

PCLK

ohpaT

ovpwdT

ihprdTisprdT

C1 C2

PSELxx

ovpwT

PWRITE

ohpwT

ohpwdT

ovpselT ohpselT

ovpenT ohpenT

AMBA APB

5-10 © Copyright ARM Limited 1999. All rights reserved. ARM IHI 0011A

5.4.4 Timing parameters

The timing parameters related to an APB bridge are given in Table 5-1 for input signals
and Table 5-2 for output signals.

Table 5-1 APB bridge input parameters

Parameter Description

Tclkl PCLK LOW time

Tclkh PCLK HIGH time

Tisnres PRESETn de-asserted setup to rising PCLK

Tihnres PRESETn de-asserted hold after rising PCLK

Tisprd For read transfers, PRDATA setup to rising PCLK

Tihprd For read transfers, PRDATA hold after rising PCLK

Table 5-2 APB bridge output parameters

Parameter Description

Tovpen PENABLE valid after rising PCLK

Tohpen PENABLE hold after rising PCLK

Tovpsel PSEL valid after rising PCLK

Tohpsel PSEL hold after rising PCLK

Tovpa PADDR valid after rising PCLK

Tohpa PADDR hold after rising PCLK

Tovpw PWRITE valid after rising PCLK

Tohpw PWRITE hold after rising PCLK

Tovpwd For write transfers, PWDATA valid after rising PCLK

Tohpwd For write transfers, PWDATA hold after rising PCLK

AMBA APB

ARM IHI 0011A © Copyright ARM Limited 1999. All rights reserved. 5-11

5.5 APB slave

APB slaves have a simple, yet flexible, interface. The exact implementation of the
interface will be dependent on the design style employed and many different options are
possible.

5.5.1 Interface diagram

Figure 5-7 shows the signal interface of an APB slave.

Figure 5-7 APB slave interface description

5.5.2 APB slave description

The APB slave interface is very flexible.

For a write transfer the data can be latched at the following points:

• on either rising edge of PCLK, when PSEL is HIGH

• on the rising edge of PENABLE, when PSEL is HIGH.

The select signal PSELx, the address PADDR and the write signal PWRITE can be
combined to determine which register should be updated by the write operation.

For read transfers the data can be driven on to the data bus when PWRITE is LOW and
both PSELx and PENABLE are HIGH. While PADDR is used to determine which
register should be read.

Read data

Address
and

control
PWRITE

APB
slave

PADDR

PRESETn

PCLK

Reset

PSELx

PENABLEStrobe

Select

PRDATAPWDATAWrite data

Clock

AMBA APB

5-12 © Copyright ARM Limited 1999. All rights reserved. ARM IHI 0011A

5.5.3 Timing diagrams

The timing parameters related to an access to an APB bus slave are shown in Figure 5-8.

Figure 5-8 APB slave transfer

Address

DataPRDATA

PWDATA

PADDR

PENABLE

PCLK

ihpaT

ohprdTovprdT

C1 C2

PSELxx

PWRITE

ihpwT

ispselT ihpselT

ispenT

ihpenT

ispaT

ispwT

ihpwdTispwdT

Data

AMBA APB

ARM IHI 0011A © Copyright ARM Limited 1999. All rights reserved. 5-13

5.5.4 Timing parameters

The timing parameters related to an APB slave are given in Table 5-3 for input signals
and Table 5-4 for output signals.

Table 5-3 APB slave input parameters

Parameter Description

Tclkl PCLK LOW time

Tclkh PCLK HIGH time

Tisnres PRESETn de-asserted setup to rising PCLK

Tihnres PRESETn de-asserted hold after falling PCLK

Tispen PENABLE setup to rising PCLK

Tihpen PENABLE hold after rising PCLK

Tispsel PSEL setup to rising PCLK

Tihpsel PSEL hold after rising PCLK

Tispa PADDR setup to rising PCLK

Tihpa PADDR hold after rising PCLK

Tispw PWRITE setup to rising PCLK

Tihpw PWRITE hold after rising PCLK

Tispwd For write transfers, PWDATA setup to rising PCLK

Tihpwd For write transfers, PWDATA hold after rising PCLK

Table 5-4 APB slave output parameters

Parameter Description

Tovprd For read transfers, PRDATA valid after rising PCLK

Tohprd For read transfers, PRDATA hold after rising PCLK

AMBA APB

5-14 © Copyright ARM Limited 1999. All rights reserved. ARM IHI 0011A

5.6 Interfacing APB to AHB

Interfacing the AMBA APB to the AHB is described in:

• Read transfers

• Write transfers on page 5-16

• Back to back transfers on page 5-18

• Tristate data bus implementations on page 5-19.

5.6.1 Read transfers

Figure 5-9 illustrates a read transfer.

Figure 5-9 Read transfer to AHB

HADDR

HWRITE

HRDATA

HREADY

PADDR

PWRITE

PSEL

PENABLE

PRDATA

T1 T2 T3 T4 T5

Addr 1

Data 1

Data 1

Addr 1

AMBA APB

ARM IHI 0011A © Copyright ARM Limited 1999. All rights reserved. 5-15

The transfer starts on the AHB at time T1 and the address is sampled by the APB bridge
at T2. If the transfer is for the peripheral bus then this address is broadcast and the
appropriate peripheral select signal is generated. This first cycle on the peripheral bus
is called the SETUP cycle, this is followed by the ENABLE cycle, when the
PENABLE signal is asserted.

During the ENABLE cycle the peripheral must provide the read data. Normally it will
be possible to route this read data directly back to the AHB, where the bus master can
sample it on the rising edge of the clock at the end of the ENABLE cycle, which is at
time T4 in Figure 5-9.

In very high clock frequency systems it may become necessary for the bridge to register
the read data at the end of the ENABLE cycle and then for the bridge to drive this back
to the AHB bus master in the following cycle. Although this will require an extra wait
state for peripheral bus read transfers, it allows the AHB to run at a higher clock
frequency, thus resulting in an overall improvement in system performance. A burst of
read transfers is shown in Figure 5-10. All read transfers require a single wait state.

Figure 5-10 Burst of read transfers

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11

HADDR

HWRITE

HRDATA

HREADY

PADDR

PWRITE

PSEL

PENABLE

PRDATA

Addr 3 Addr 4Addr 2Addr 1

Data 1 Data 2 Data 3 Data 4

Data 1 Data 2 Data 3 Data 4

Addr 3 Addr 4Addr 2Addr 1

AMBA APB

5-16 © Copyright ARM Limited 1999. All rights reserved. ARM IHI 0011A

5.6.2 Write transfers

Figure 5-11 shows a write transfer.

Figure 5-11 Write transfer from AHB

Single write transfers to the APB can occur with zero wait states. The bridge is
responsible for sampling the address and data of the transfer and then holding these
values for the duration of the write transfer on the APB.

HADDR

PADDR

PWRITE

PSEL

PENABLE

PWDATA

HWRITE

HWDATA

HREADY

T1 T2 T3 T4 T5 T6

Addr 1

Data 1

Data 1

Addr 1

AMBA APB

ARM IHI 0011A © Copyright ARM Limited 1999. All rights reserved. 5-17

A burst of write transfers is shown in Figure 5-12.

Figure 5-12 Burst of write transfers

While the first transfer can complete with zero wait states, subsequent transfers to the
peripheral bus will require a single wait state for each transfer performed.

It is necessary for the bridge to contain two address registers, in order that the bridge
can sample the address of the next transfer while the current transfer continues on the
peripheral bus.

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12

HADDR

HWRITE

HWDATA

HREADY

PADDR

PWRITE

PSEL

PENABLE

PWDATA

Addr 1 Addr 2 Addr 3 Addr 4

Data 1 Data 2 Data 3 Data 4

Addr 3 Addr 4Addr 1 Addr 2

Data 2 Data 3 Data 4Data 1

AMBA APB

5-18 © Copyright ARM Limited 1999. All rights reserved. ARM IHI 0011A

5.6.3 Back to back transfers

Figure 5-13 shows a number of back to back transfers. The sequence starts with a write,
which is then followed by a read, then a write, then a read.

Figure 5-13 Back to back transfers

Figure 5-13 shows that if a read transfer immediately follows a write, then 3 wait states
are required to complete the read. In fact, in a processor-based design a write followed
by a read does not occur frequently as the processor will perform an instruction fetch
between the two transfers and it is unlikely that the instruction memory would reside on
the APB.

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12

HADDR

HWRITE

HWDATA

HREADY

PADDR

PWRITE

PSELx

PENABLE

PWDATA

Addr 1 Addr 2 Addr 3 Addr 4

Data 1

HRDATA Data 4Data 2

Data 3

Addr 1 Addr 2 Addr 3 Addr 4

PRDATA Data 4Data 2

Data 1 Data 3

AMBA APB

ARM IHI 0011A © Copyright ARM Limited 1999. All rights reserved. 5-19

5.6.4 Tristate data bus implementations

It is recommended that the AMBA APB is implemented with separate read and write
data buses, which allows the use of either a multiplexed bus or OR-bus scheme to
interconnect the various slaves on the APB. If a tristate bus is used then the read and
write data buses may be combined into a single bus, as read data and write data never
occur simultaneously.

Figure 5-14 illustrates that no special consideration is required if the data bus is
implemented using tristate buffers. If the data bus is tristate in the SETUP cycle of a
read transfer and whenever the bus is in the Idle state then an entire clock cycle of
turnaround always occurs between different drivers of the data. For bursts of write
transfers there is no turnaround as the bridge will drive data in the SETUP cycle of
every transfer, however this is perfectly acceptable as the bridge is the only driver of the
data bus for write transfers and therefore no turnaround period is required.

Figure 5-14 shows how the read and write data buses can be successfully combined into
a single tristate data bus.

Figure 5-14 Tristate data bus

Data 1 Data 3Data 2

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12

HADDR

HWRITE

HWDATA

HREADY

PADDR

PWRITE

PSELx

PENABLE

PWDATA

Addr 1 Addr 2 Addr 3 Addr 4

Data 1

HRDATA
Data 4Data 2

Data 3

Addr 1 Addr 2 Addr 3 Addr 4

PRDATA Data 4Data 2

Data 1 Data 3

PDATA Data 4

AMBA APB

5-20 © Copyright ARM Limited 1999. All rights reserved. ARM IHI 0011A

5.7 Interfacing APB to ASB

Interfacing the AMBA APB to the ASB is described in:

• Write transfer

• Read transfer on page 5-21.

5.7.1 Write transfer

Figure 5-15 illustrates how an interface from ASB to APB can be constructed. The write
transfer can occur with zero wait-states, although an additional wait state is required for
a burst of writes.

Figure 5-15 Write transfer from ASB

BCLK

Addr 1

PADDR

PWRITE

PSEL

PENABLE

PWDATA

Addr 1

Data 1

BWRITE

BD

BWAIT

BA

Data

AMBA APB

ARM IHI 0011A © Copyright ARM Limited 1999. All rights reserved. 5-21

5.7.2 Read transfer

The read transfer will always require a single wait state (see Figure 5-16). In systems
with a high clock frequency it may be necessary to insert an additional wait state to
ensure that the read data has adequate time to pass through the bridge and become valid
on the ASB.

Figure 5-16 Read transfer to ASB

Data 1

BCLK

Addr 1

PADDR

PWRITE

PSEL

PENABLE

PRDATA

Addr 1

BWRITE

BD

BWAIT

BA

Data

AMBA APB

5-22 © Copyright ARM Limited 1999. All rights reserved. ARM IHI 0011A

5.8 Interfacing rev D APB peripherals to rev 2.0 APB

When using a combination of peripherals, some designed to the revision 2.0
specification and others designed to previous revisions, it is recommended that a
revision 2.0 bridge is used and the earlier version peripherals are converted for use with
the new bridge.

This section shows how a single revision D peripheral may be converted to the latest
version of the APB. If a number of peripherals are to be converted it is more efficient
to perform the conversion in a single centralized block.

There are two fundamental differences between the rev D and rev 2.0 APB
specifications:

• the timing of the strobe signal compared to the enable signal

• the point at which read data is sampled.

To quickly determine whether a peripheral is designed to the rev D or rev 2.0
specification, see if it has a PSTB input (in which case it is rev D) or a PENABLE input
(in which case it is rev 2.0). Figure 5-17 shows the two stages that are required to
interface an existing revision D peripheral.

Figure 5-17 Interfacing a rev D peripheral

Firstly, the PSEL signal may be used to generate a PSTB signal. A fed-back version of
the PSTB signal can be used to ensure the signal is only asserted for a single clock
cycle.

The second interface stage that may be required is a falling edge triggered register or
transparent latch on the output data (read data) from the peripheral. This is only required
if the peripheral changes the output data after the falling edge.

PSTBPSEL
D Q

PCLK

BCLK

PWRITE

PADDR

PWDATA

Revision D
compatible
peripheral

PRDATAData outData in D Q

ARM IHI 0011A © Copyright ARM Limited 1999. All rights reserved. 6-1

Chapter 6
AMBA Test Methodology

This chapter describes the test interface used with AMBA module designs. It contains
the following sections:

• About the AMBA test interface on page 6-2

• External interface on page 6-4

• Test vector types on page 6-6

• Test interface controller on page 6-7

• The AHB Test Interface Controller on page 6-12

• Example AMBA AHB test sequences on page 6-17

• The ASB test interface controller on page 6-25

• Example AMBA ASB test sequences on page 6-27.

AMBA Test Methodology

6-2 © Copyright ARM Limited 1999. All rights reserved. ARM IHI 0011A

6.1 About the AMBA test interface

The AMBA test philosophy allows individual modules in the system to be tested in
isolation. Each module is designed so it can be tested only using transfers from the bus
and does not rely on the interaction of any other system element. Therefore it is
necessary to have access to the inputs and outputs of the peripheral that are not directly
connected to the bus and this is provided by a test harness.

Figure 6-1 Peripheral test harness

Application
peripheral

Bus interface

Dedicated
peripheral

inputs

Dedicated
peripheral
outputs

Test
results

Test
stimuli

AMBA Test Methodology

ARM IHI 0011A © Copyright ARM Limited 1999. All rights reserved. 6-3

A low gate-count Test Interface Controller (TIC) bus master module is required in the
system to allow externally applied test vectors to be converted into internal bus
transfers.

The TIC uses a minimal three-wire handshake mechanism to control the application of
test vectors and the data path of the External Bus Interface (EBI) is used to provide a
high speed 32-bit parallel vector interface.

Figure 6-2 TIC and external bus interface interaction

To support this method of test vector application a 32-bit bidirectional port must be
available during test access. For a system with an external data bus interface of 32-bits
this is straightforward. 16-bit and 8-bit data bus designs require, for example, 16 or 24
address lines to be reconfigured as bidirectional test port signals for test mode access.

Test
Interface
Controller

(TIC)

TCLK

Control

External
Bus

Interface
(EBI)

Address

Data

TREQA

TREQB

TACK

TBUS[31:0]

AMBA Test Methodology

6-4 © Copyright ARM Limited 1999. All rights reserved. ARM IHI 0011A

6.2 External interface

The external test interface consists of:

• a test clock

• three control signals

• a 32-bit test bus.

Only two dedicated signal pins are required (TREQA and TACK) to control the entry
and exit of test mode. The remaining signals can be provided by reusing existing device
pins.

6.2.1 Test bus request A

TREQA is the test bus request A input signal and is required as a dedicated device pin.

During normal system operation the TREQA signal is used to request entry into the test
mode. This will cause the test bus to become tristated, allowing test vectors to be
applied.

During test this signal is used, in combination with TREQB, to indicate the type of test
vector that will be applied in the following cycle.

6.2.2 Test bus request B

TREQB is the test bus request B input signal.

During test this signal is used, in combination with TREQA, to indicate the type of test
vector that will be applied in the following cycle.

6.2.3 Test acknowledge

TACK is the test bus acknowledge output signal and is required as a dedicated device
pin.

The test bus acknowledge signal gives external indication that the test bus has been
granted and also indicates when a test access has completed. When TACK is LOW the
current test vector must be extended until TACK becomes HIGH. The TREQA and
TREQB signals are only sampled by the TIC when TACK is HIGH.

Table 6-1 and Table 6-2 show the operation of the TREQA, TREQB and TACK
signals. The signals have different functions depending on whether or not test mode has
been entered.

AMBA Test Methodology

ARM IHI 0011A © Copyright ARM Limited 1999. All rights reserved. 6-5

6.2.4 Test clock

TCLK is the test clock input signal.

In test mode, the internal bus clock is driven from the external TCLK source. This pin
may be the normal clock oscillator source input or a port replacement signal. The
system bus clock must not glitch when switching between normal and test mode.

On entry into test mode the TIC indicates that it has switched to the test clock input by
asserting the TACK signal.

6.2.5 Test bus

TBUS[31:0] is the 32-bit bidirectional test port.

The test bus is used as an input to apply address, control and write vectors. For read
vectors the test bus is used as a device output. The test interface protocol ensures that a
turnaround period is always provided when changing the direction of the test bus.

Table 6-1 Test control signals during normal operation

TREQA TREQB TACK Description

0 0 0 Normal operation

1 0 0 Enter test mode request

0 1 0 Reserved (for external master request)

- - 1 Test mode entered

Table 6-2 Test control signals during test mode

TREQA TREQB TACK Description

- - 0 Current access incomplete

1 1 1 Address vector, control vector or turnaround vector

1 0 1 Write vector

0 1 1 Read vector

0 0 1 Exit test mode

AMBA Test Methodology

6-6 © Copyright ARM Limited 1999. All rights reserved. ARM IHI 0011A

6.3 Test vector types

There are 5 types of test vector associated with the test interface:

• address vector

• write vector

• read vector

• control vector

• turnaround vector.

Address vector, control vector and turnaround vector are all indicated by the same value
on the TREQA and TREQB signals. The following rules may be used to determine
which type of vector is being applied.

• When a single address/control vector is applied it is an address vector.

• When a burst of address/control vectors are applied they are all address vectors,
apart from the last which is a control vector.

• A read vector, or burst of read vectors, is always followed by a turnaround
vector. This is the only occurrence of the turnaround vector. The ASB version of
the test interface requires a single turnaround vector, while the AHB version
requires two.

AMBA Test Methodology

ARM IHI 0011A © Copyright ARM Limited 1999. All rights reserved. 6-7

6.4 Test interface controller

The Test Interface Controller (TIC) is a bus master that accepts test vectors from the
external test bus, TBUS[31:0], and initiates bus transfers. The TIC latches address
vectors and, when required, increments the address to allow read and write bursts of test
vectors.

6.4.1 Test transfer parameters

The default TIC bus master operation when entering test mode is:

• 32-bit transfer width

• privileged system access.

This is sufficient for testing many embedded system designs and minimizes the on-chip
test support logic. In the case of systems that require the above control signals to be
dynamically changed, a control vector mechanism is used to update the control signals
within the TIC.

Bit 0 of the control vector is used to indicate if the control vector is valid. Thus, if a
control vector is applied with bit 0 LOW, the vector will be ignored and will not update
the control information. This mechanism allows address vectors which have bit 0 LOW
to be applied for many cycles without updating the control information.

6.4.2 Incremental addressing

In order to support burst accesses using the test interface the TIC may support
incrementing of the bus address. The number of address bits that are incremented is
dependent on the maximum burst access length that is required via the test interface.
This is system-dependent but a typical implementation would use an 8-bit address
incrementer, allowing burst access up to 1kB boundaries using word transfers.

The control vector also provides a mechanism to enable and disable the address
incrementer within the TIC. This allows burst accesses to incremental addresses, as
would be used for testing internal RAM. Alternatively, the address increment can be
disabled, such that successive accesses of a burst occur to the same address, as would
be required to continually read from a single peripheral register.

If the transfer size is changed dynamically then any address incrementer support for
burst-mode accesses must be able to support increment by byte, halfword and word
offsets, so adaptive address incrementer logic is required.

The address incrementer is disabled by default and must be enabled using a control
vector prior to use.

AMBA Test Methodology

6-8 © Copyright ARM Limited 1999. All rights reserved. ARM IHI 0011A

6.4.3 Entering test mode

In normal operating mode TREQA will be LOW, indicating that test access is not
required and the test bus will be used as required for normal operation, which will
usually be part of the external bus interface. Entering test mode allows test vectors to
be applied externally that will cause transfers on the internal bus.

The following sequence is required in order to enter test mode:

1. TREQA is asserted to request test bus access.

2. Test mode is entered when the TIC has been granted the internal bus and this is
indicated by the assertion of the TACK signal.

3. At this point TCLK will become the source of the internal clock signal.

4. When test mode has been entered TREQB is asserted to initiate an address
vector.

The TIC will not perform any internal transfers until a valid address vector has been
applied.

A synchronous tester would not be expected to poll TACK for the bus. Normally the
TREQA signal would be asserted for a minimum number of cycles to guarantee to gain
access to the bus (completion of the longest wait-state peripheral access or the
maximum number of cycles for all bus masters to have completed their current
instruction).

6.4.4 Address vectors

An address vector must be applied before any read or write operations can occur. The
following sequence is required in order to apply an address vector:

1. TREQA and TREQB are both asserted HIGH indicating an address vector next
cycle.

2. In the next cycle the address is applied to TBUS[31:0], while TREQA and
TREQB change to reflect the type of test vector that will follow.

In some high-speed systems it may be necessary to apply more than one address vector
in succession, to allow sufficient time for the address to propagate from the external test
bus through to the internal address bus. In such a case the TIC can negate TACK for
the first cycle of the address vector, forcing a second cycle of address vector to be
applied.

AMBA Test Methodology

ARM IHI 0011A © Copyright ARM Limited 1999. All rights reserved. 6-9

6.4.5 Control vector

A control vector is always the last in a sequence of address vectors and is used to update
control information within the TIC. The sequence is as follows:

1. TREQA and TREQB are asserted HIGH indicating an address vector next
cycle.

2. In the next cycle the address is applied to TBUS[31:0]. TREQA and TREQB
both remain HIGH as the control vector will occur in the following cycle.

3. In the next cycle the control information is applied to TBUS[31:0], while
TREQA and TREQB change to reflect the type of test vector that will follow.

4. Finally the transfer occurs on the internal bus.

It is possible to apply an invalid control vector, by setting bit 0 of the control vector
LOW. This will not change the control information within the TIC.

6.4.6 Write test vectors

Once test mode has successfully been entered, read and write operations may be
performed through the test interface. In order to perform a write operation internally it
is necessary to supply an address followed by the write data.

The address used for the write transfer will depend on the preceding vectors and a write
vector may occur after any of the following:

• a single address vector

• an address/control vector sequence

• another write test vector, forming a burst of writes

• a turnaround vector after a single read or burst of reads.

When an internal bus transfer is extended by the insertion of wait states this is indicated
externally by the TACK signal going LOW. During the waited condition the TREQA
and TREQB should change to indicate the vector type that will follow when the current
vector has completed. However, it is important to note that in the case of a write vector
the data should continue to be applied to TBUS[31:0].

AMBA Test Methodology

6-10 © Copyright ARM Limited 1999. All rights reserved. ARM IHI 0011A

6.4.7 Read test vectors

In a similar manner to write test vectors, read test vectors may follow a number of
different vectors, as listed below, and the address used for the transfer will depend on
the preceding vectors:

• a single address vector

• an address/control vector sequence

• another read test vector, forming a burst of reads

• a single write or burst of writes.

A read, or burst of reads, must always be followed by a turnaround vector to prevent
bus clash on the external TBUS signals. As for a write vector, if the external transfer is
extended then this is indicated externally by the TACK signal going LOW. The read
data should not be sampled externally until the internal transfer has completed.

6.4.8 Burst vectors

Multiple write vectors or read vectors may be joined together to form bursts of vectors.
This enables test vectors to be applied at a much faster rate by removing the need for an
address vector to be associated with each read or write vector.

Burst transfers may use either incrementing addresses or static addresses, depending on
whether or not the TIC contains an address incrementer which is enabled. With no
address incrementer the TIC will perform non-sequential transfers to a constant address.

If the TIC does contain an enabled address incrementer then the address used for each
successive transfer will be incremented by the appropriate amount, which is dictated by
the transfer size.

6.4.9 Changing a burst direction

It is possible to change the transfer direction of a burst, from read to write or write to
read.

If changing from read to write it is still necessary to insert a turnaround vector. This will
not load a new address but will internally cause a new burst to be started allowing
internal slaves to observe that the direction of the burst has altered.

AMBA Test Methodology

ARM IHI 0011A © Copyright ARM Limited 1999. All rights reserved. 6-11

6.4.10 Exiting test mode

Test mode is exited using the following sequence:

1. Apply a single cycle of address vector, which ensures any internal transfers have
been completed.

2. TREQA and TREQB are both driven LOW to indicate that test mode is to be
exited.

3. When the test interface has been configured for normal system operation TACK
will go LOW to indicate that test mode has been exited.

It is important that test mode can be entered and exited cleanly so that diagnostic testing
may be performed during system operation.

AMBA Test Methodology

6-12 © Copyright ARM Limited 1999. All rights reserved. ARM IHI 0011A

6.5 The AHB Test Interface Controller

The following state diagram illustrates the operation of the TIC.

Figure 6-3 Test Interface Controller state diagram

The following points describe the TIC state diagram operation:

SyncTREQA != 1

SyncTREQA = 1

IDLE

START

TREQA/B = ADDR

ADDRVEC

TREQA/B != ADDRTREQA/B = EXIT

TREQA/B = WRITE

READVEC

LASTREAD

TURNAROUND

WRITEVEC

TREQA/B = ADDR or
TREQA/B = EXIT

TREQA/B = WRITE

TREQA/B = ADDR or
TREQA/B = EXIT

TREQA/B = ADDR

TREQA/B = READ
TREQA/B = !READ

TREQA/B = READ

TREQA/B = !READ

TREQA/B = READ

TREQA/B = WRITE

AMBA Test Methodology

ARM IHI 0011A © Copyright ARM Limited 1999. All rights reserved. 6-13

• At reset the TIC is in the IDLE state and will not be requesting use of the AHB.
When in the IDLE state TACK is driven LOW to indicate that the test interface
cannot be used.

• The TACK signal is used to control all transactions around the state machine,
except for the transition from IDLE to START. In all other cases the state
machine remains in the same state if the TACK signal is low.

• The TREQA signal is used to move from the IDLE state to the START state.
This has been changed from the previous specification, which required TREQA
to be high and TREQB to be low, and has the advantage that it is possible to use
just TREQA to move from normal operation into test mode.

• In some system implementations it will be necessary to switch from an internal
clock source to an external clock TCLK which is used during test mode. When
TREQA first goes high this can be used as an indication that the clock source
should be changed and a return signal that indicates when the clock switch has
occurred successfully can be used to prevent the move into the START state until
the test clock is in use.

• If clock switching is being used then it is possible that TREQA is asynchronous
to the on-chip clock before test mode is entered and therefore a synchronizer is
used to generate a synchronized version of TREQA to control the movement
from the IDLE state to the START state.

• The START state is used to ensure that the first vector applied is an address
vector to prevent read and write vectors occurring before the address has been
initialized. The START state is only exited when TREQA/B indicate an address
vector and the following state is ADDRVEC.

• In the ADDRVEC state the TIC registers the address on the TBUS. The
ADDRVEC state is used for both address and control vectors, so additional logic
is required to determine whether the value on TBUS should be considered as an
address or as a control vector. If the previous cycle was an address vector and the
following cycle (as indicated by TREQA/B) is not an address vector then the
current cycle is a control vector.

• It is possible to stay in the ADDRVEC state for a number of cycles, but usually
an address vector will be followed by either read or write transfers.

• If a write transfer is being performed the TIC moves into the WRITEVEC state
at the same time that it initiates the transfer on the bus and multiple write
transfers can be performed by remaining in the WRITEVEC state. Usually the
WRITEVEC will be followed by an address vector, however it is also possible to
move directly to read transfer by moving to the READVEC state.

AMBA Test Methodology

6-14 © Copyright ARM Limited 1999. All rights reserved. ARM IHI 0011A

• When a read, or a burst of reads is performed the TIC enters the READVEC
state. This state indicates that the TIC is starting a read transfer on the bus and it
is not until the following cycle that the read data will appear. When the
READVEC state is first entered the TBUS will be tristate, but will become
driven for further cycles in the READVEC state.

• All read vectors must be followed by two turnaround vectors. For the first of
these cycles the TIC will move into the LASTREAD state, during which the last
read of the transfer will complete and will be driven out on to the external
TBUS. During the LASTREAD state no internal transfers will be started and the
TIC will perform IDLE transfers on the bus.

• Following the LASTREAD state the TIC moves into the TURNAROUND state,
during which time the external TBUS will be tristate. The TURNAROUND state
will usually be followed by an address vector, but it is also possible to go
immediately to a write vector or another read.

• The usual method to exit from test is to return to the ADDRVEC state and then
set TREQA/TREQB both LOW to return to IDLE and effectively exit from test.
In fact, at any point the test mode can be exited by setting both TREQA and
TREQB LOW and eventually this will cause the TIC to exit from test.

Note

When applying TIC vectors it is theoretically possible to assert the HLOCK output and
then exit from the test. If this happens and then the TIC is granted the bus under normal
operation it will effectively lock up the bus. No protection is provided within the TIC to
prevent this occurrence.

6.5.1 Control vector

A control vector is included within the TIC to determine the types of transfer it can
perform. The control vector is used to set the values of HSIZE, HPROT and HLOCK.

The default TIC bus master operation when entering test mode is:

• 32-bit transfer width - HSIZE[1:0] signifies word transfer

• privileged system access - HPROT[3:0] signifies privileged data access,
uncacheable and unbufferable.

Bit 0 of the control vector is used to indicate if the control vector is valid. Thus, if a
control vector is applied with bit 0 LOW, the vector will be ignored and will not update
the control information. This mechanism allows address vectors which have bit 0 LOW
to be applied for many cycles without updating the control information.

AMBA Test Methodology

ARM IHI 0011A © Copyright ARM Limited 1999. All rights reserved. 6-15

Although the default settings will be sufficient for testing many embedded system
designs, the control vector can be used both to change the control signals of the transfer
and also to determine whether the TIC should generate fixed addresses or incrementing
addresses.

Table 6-3 defines the bit positions of the control vector. The control vector bit
definitions are designed to be backwards compatible with earlier versions of the TIC
and therefore not all of the control bits are in obvious positions.

There is no mechanism to control the types of burst that the TIC can perform and only
incrementing bursts of an undefined length are supported. The TIC only supports 8-bit,
16-bit and 32-bit transfers and therefore HSIZE[2] cannot be altered and will always
be low.

In order to support burst accesses using the test interface the Test Interface Controller
may support incrementing of the bus address. The TIC increments 8 address bits and
the address range that can be covered by this incrementer is dependent on the size of the
transfers being performed.

Table 6-3 Control vector bit definitions

Bit
position

Description

0 Control vector valid

1 Reserved

2 HSIZE[0]

3 HSIZE[1]

4 HLOCK

5 HPROT[0]

6 HPROT[1]

7 Address increment enable

8 Reserved

9 HPROT[2]

10 HPROT[3]

AMBA Test Methodology

6-16 © Copyright ARM Limited 1999. All rights reserved. ARM IHI 0011A

The control vector provides a mechanism to enable and disable the address incrementer
within the TIC. This allows burst accesses to incremental addresses, as would be used
for testing internal RAM. Alternatively, the address increment can be disabled such that
successive accesses of a burst occur to the same address, as would be required to
continually read from a single peripheral register.

If HSIZE[1:0] is changed dynamically then any address incrementer support for burst-
mode accesses must be able to support increment by byte, halfword and word offsets,
so adaptive address incrementer logic is required.

The address incrementer is disabled by default and must be enabled using a control
vector prior to use.

Note

The control vector is primarily used to change signals which have the same timing as
the address bus. However the control vector also allows the lock signal to be changed,
which is actually required before the locked transfer commences. If the HLOCK signal
is used during testing it should be set a transfer before it is required. This difference in
timing on the HLOCK signal may in some cases cause an additional transfer to be
locked both before and after the sequence that should in fact be locked.

AMBA Test Methodology

ARM IHI 0011A © Copyright ARM Limited 1999. All rights reserved. 6-17

6.6 Example AMBA AHB test sequences

Example AHB test sequences are described under the following headings:

• Entering test mode

• Write test vectors on page 6-19

• Read transfers on page 6-20

• Control vector on page 6-21

• Burst vectors on page 6-22

• Read-to-write and write-to-read on page 6-23

• Exiting test mode on page 6-24.

6.6.1 Entering test mode

In normal operating mode TREQA will be LOW, indicating that test access is not
required and the test bus will be used as required for normal operation, which will
usually be part of the external bus interface. Entering test mode allows test vectors to
be applied externally that will cause transfers on the internal bus.

The following sequence, as illustrated in Figure 6-4, is required in order to enter test
mode:

1. TREQA is asserted to request test bus access.

2. Test mode is entered when the TIC has been granted the internal bus and this is
indicated by the assertion of the TACK signal.

3. At this point TCLK will become the source of the internal HCLK signal.

4. When test mode has been entered TREQB is asserted to initiate an address
vector.

5. The TIC will not perform any internal transfers until a valid address vector has
been applied.

AMBA Test Methodology

6-18 © Copyright ARM Limited 1999. All rights reserved. ARM IHI 0011A

Figure 6-4 Test start sequence

A synchronous tester is not expected to poll TACK for the bus.

Normally the TREQA signal is asserted for a minimum number of cycles to guarantee
access to the bus (completion of the longest wait-state peripheral access or the
maximum number of cycles for all bus masters to have completed their current
instruction).

TCLK

TREQA

TREQB

TACK

TBUS[31:0]

T1 T2 T3 T4 T5 T6

Test bus
requested

Test bus
available

Address
vector

Address

AMBA Test Methodology

ARM IHI 0011A © Copyright ARM Limited 1999. All rights reserved. 6-19

6.6.2 Write test vectors

Figure 6-5 shows the sequence of events when applying a set of write test vectors.
Initially an address vector is applied and this is followed by a write test vector.

Figure 6-5 Write test vector

The following points apply when writing test vectors:

• The TREQA and TREQB signals are pipelined and are used to indicate what
type of vector will be applied in the following cycle. Figure 6-5 shows an
example of a number of write transfers being performed.

• The TIC samples the address and TREQA/B signals at time T3. Following this it
can initiate the appropriate transfer on the AHB.

• In the following cycle the write data is driven on to the TBUS and it is then
sampled on the following clock edge, T4, and driven on to the internal bus.

• If the internal transfer is not able to complete then the TACK signal is driven low
and this indicates that the external test vector must be applied for another cycle.

T1 T2 T3 T4 T5 T7

HCLK

Control

TBUS[31:0]

TACK

HBURST[2:0]

HWRITE

HSIZE[2:0]

HPROT[3:0]

HWDATA[31:0]

HREADY

TREQA

TREQB

HADDR[31:0] A

Addr Write1 Write2 Addr

HTRANS[31:0] IDLE NONSEQ SEQ IDLE

A+4

Data2Data1

Address
vector

Write
vector

Write
vector

Address
vector

Write3

Write
vector

SEQ

A+8

Data3

T6 T8

AMBA Test Methodology

6-20 © Copyright ARM Limited 1999. All rights reserved. ARM IHI 0011A

6.6.3 Read transfers

Read transfers are more complex because they require the TBUS to be driven in the
opposite direction and therefore additional cycles are required to prevent bus clash
when changing between different drivers of TBUS. Figure 6-6 shows a typical test
sequence for reads.

Figure 6-6 Read test vector

The following points apply when reading test vectors:

• The TREQA and TREQB signals are used in the same way as for a write
transfer. Initially, TREQA/B are used to apply an address vector, in the
following cycle they are used to indicate that a read transfer is required. For the
first cycle of a read the TBUS must be tristate, which ensures that the external
equipment driving TBUS has an entire cycle to tristate its buffers before the TIC
will enable the on-chip buffers to drive out the read data.

• At the end of a burst of reads it is also necessary to allow time for bus
turnaround. In this case the TIC must turn off the internal buffers and an entire
cycle is allowed before the external test equipment starts to drive.

• The end of a burst of reads is indicated by both TREQA and TREQB being
HIGH, as for an address vector. In fact they must indicate address vector for two
cycles, which allows for both the turnaround cycle at the start of the burst and
also the turnaround cycle at the end of the burst.

HCLK

Control

TBUS[31:0]

TACK

HBURST[2:0]
HSIZE[2:0]

HPROT[3:0]

HRDATA[31:0]

HREADY

TREQA

TREQB

HADDR[31:0] A

Addr

HTRANS[31:0] IDLE NONSEQ SEQ

A+4

Read1

Address
vector

Read
Write
vector

AddressRead1

SEQ

A+8

HWRITE

Read2 Read3 Write

Read Read
Address
vector

NONSEQ

A

Control

Read3Read2

T1 T2 T3 T4 T5 T7T6 T8 T10T9 T11

AMBA Test Methodology

ARM IHI 0011A © Copyright ARM Limited 1999. All rights reserved. 6-21

6.6.4 Control vector

The operation of the TIC may be modified by the use of a control vector. Whenever
more than one address vector is applied in succession then the last vector is considered
to be a control vector and is not latched as the address. Bit 0 of the control vector is used
to determine whether or not the control vector should be considered valid, which allows
multiple address vectors to be applied without changing the control information,

Figure 6-7 shows the process of inserting a control vector.

Figure 6-7 Control vector

At time T4 the TIC can determine that the TBUS contains a control vector. This is
because the previous cycle was an address vector and TREQA/B are indicating that the
following cycle is either a read or a write and therefore the current cycle must be a
control vector.

T1 T2 T3 T4 T5 T6

HCLK

Control

TBUS[31:0]

TACK

HBURST[2:0]

HWRITE

HSIZE[2:0]

HPROT[3:0]

HWDATA[31:0]

HREADY

TREQA

TREQB

HADDR[31:0] A

Addr Control Write1 Write2 Addr

HTRANS[31:0] IDLE IDLE NONSEQ SEQ IDLE

A+4

Data2Data1

Address
vector

Control
vector

Write
vector

Write
vector

Address
vector

AMBA Test Methodology

6-22 © Copyright ARM Limited 1999. All rights reserved. ARM IHI 0011A

6.6.5 Burst vectors

The examples of read and write transfers in Figure 6-5 on page 6-19 and Figure 6-6 on
page 6-20 also show how additional transfers can be used to form burst transfers on the
bus. The TIC has limited capabilities for burst transfers and can only perform
undefined-length incrementing bursts.

The TIC contains an 8-bit incrementer and if an attempt is made to perform a burst
which crosses the incrementer boundary then the address will wrap and the TIC will
signal the transfer as NONSEQUENTIAL. The exact boundary at which this will occur
is dependent on the size of the transfer. For word transfers the incrementer will overflow
at 1kB boundaries, for halfword transfers it will overflow at 512-byte boundaries and
for byte transfers the overflow will occur at 256-byte boundaries.

AMBA Test Methodology

ARM IHI 0011A © Copyright ARM Limited 1999. All rights reserved. 6-23

6.6.6 Read-to-write and write-to-read

It is possible to switch between read transfers and write transfers without applying a
new address vector. Usually this would be done with the address incrementer disabled,
so that both the read transfers and the write transfers would be to the same address. It is
also possible to do this with the incrementer enabled if the test circumstances require it.

Figure 6-8 Read then write transfers

When moving from a read transfer to a write transfer it is also necessary to allow the
two cycles for bus handover and therefore TREQA and TREQB should signal address
vector for two cycles after the read. This will not cause the address to be changed unless
it is followed by a third address vector. Figure 6-8 illustrates the sequence of events.

HCLK

Control

TBUS[31:0]

TACK

HBURST[2:0]

HSIZE[2:0]

HPROT[3:0]

HRDATA[31:0]

HREADY

TREQA

TREQB

HADDR[31:0] A

Addr

HTRANS[31:0] IDLE NONSEQ IDLE

A+4

Read data

Address
vector

Read Write

WriteRead

NONSEQIDLE

HWDATA[31:0] Write data

HWRITE

T1 T2 T3 T4 T5 T6 T7 T8

AMBA Test Methodology

6-24 © Copyright ARM Limited 1999. All rights reserved. ARM IHI 0011A

6.6.7 Exiting test mode

Test mode is exited using the following sequence:

1. Apply a single cycle of address vector, which causes an IDLE cycle internally,
which ensures any internal transfers have been completed.

2. TREQA and TREQB are both driven LOW to indicate that test mode is to be
exited.

3. When the test interface has been configured for normal system operation TACK
will go LOW to indicate that test mode has been exited.

It is important that test mode can be entered and exited cleanly so that the TIC can also
be used for diagnostic test during system operation, as well as production testing.

AMBA Test Methodology

ARM IHI 0011A © Copyright ARM Limited 1999. All rights reserved. 6-25

6.7 The ASB test interface controller

Figure 6-9 shows the ASB test interface controller state diagram.

Figure 6-9 Test interface controller state diagram

TREQA and TREQB are sampled on the falling edge of TCLK when TACK is HIGH,
except in the NORMAL OPERATION state where TREQA is used asynchronously to
transition into the ADDRESS OR CONTROL state. The reset state is NORMAL
OPERATION.

6.7.1 Control vector bit definitions

A control vector is included within the TIC to determine the types of transfer it can
perform. The control vector is used to set the values of BSIZE, BPROT and BLOK
and to control address incrementing.

Byte 0 of the control packet is used to define the access that will occur on the internal
system bus. Byte 1 of the control packet is reserved for clock control and debug.

Table 6-4 shows the control vector bit assignments.

READ

!TREQA &
TREQB

ADDRESS OR
CONTROL

NORMAL
OPERATION

ADDRESS OR
CONTROL

TURNAROUND

TREQA &
TREQB

TREQA &
!TREQB

!TREQA & TREQB

TREQA &
!TREQB

TREQA & !TREQB

TREQA &
TREQB

!TREQA &
TREQB

!TREQA &
TREQB

TREQA &
TREQB

TREQA &
TREQB

TREQA

!TREQA & !TREQB

!TREQA

AMBA Test Methodology

6-26 © Copyright ARM Limited 1999. All rights reserved. ARM IHI 0011A

Table 6-4 Control vector bit definitions

Bit position Description

0 Control vector valid

1 Reserved

2 BSIZE[0]

3 BSIZE[1]

4 BLOK

5 BPROT[0]

6 BPROT[1]

7 Address increment enable

AMBA Test Methodology

ARM IHI 0011A © Copyright ARM Limited 1999. All rights reserved. 6-27

6.8 Example AMBA ASB test sequences

Example ASB test sequences are described under the following headings:

• Entering test mode

• Address vectors on page 6-28

• Control vectors on page 6-29

• Write test vectors on page 6-31

• Changing burst direction on page 6-36

• Exiting test mode on page 6-37.

6.8.1 Entering test mode

Test mode is entered, as shown in Figure 6-10, using the following sequence:

1. TREQA is asserted to request test bus access.

2. Test mode is entered when the TIC has been granted the internal bus and this is
indicated by the assertion of the TACK signal.

3. At this point TCLK will become the source of the internal BCLK signal.

4. When test mode has been entered TREQB is asserted to initiate an address
vector.

Figure 6-10 Test start sequence

TCLK

TACK

TREQB

TREQA

TBUS

Test bus
requested

Test bus
available

Address
vector

Address

AMBA Test Methodology

6-28 © Copyright ARM Limited 1999. All rights reserved. ARM IHI 0011A

6.8.2 Address vectors

An address vector must be applied before a read or write operation can occur. Figure
6-11 shows an example of a single address vector followed by a write vector, the
following sequence occurs:

1. TREQA and TREQB are both asserted HIGH to indicate an address vector next
cycle.

2. In the next cycle the address is applied, while TREQA and TREQB change to
indicate the type of test vector that will follow. During this cycle the address
appears on the address bus.

3. In the next cycle the write (or read) vector is applied.

Figure 6-11 Address vector

BD

BA

TCLK

TACK

A

A-TRANBTRAN[1:0] N-TRAN

TREQB

TREQA

TBUS

Write
data

C0 C1 C2

Address
vector

Write 1
vector

AMBA Test Methodology

ARM IHI 0011A © Copyright ARM Limited 1999. All rights reserved. 6-29

6.8.3 Control vectors

A control vector must always follow an address vector. Figure 6-12 shows an address
and control vector sequence followed by a write vector. The following sequence occurs:

1. TREQA and TREQB both remain HIGH after the address vector has ended to
indicate a control vector next cycle.

2. In the next cycle control information is applied to TBUS[31:0], while TREQA
and TREQB change to reflect the type of test vector that will follow. During this
cycle any internal signals, which have been affected by the control vector, will
change.

Figure 6-12 Control vector

BD

BA

TCLK

TACK

A

A-TRAN N-TRANBTRAN[1:0] A-TRAN

TREQB

TREQA

TBUS

Write
data

C0 C1 C2

Address
vector

Control
vector

Write
vector

BSIZE

AMBA Test Methodology

6-30 © Copyright ARM Limited 1999. All rights reserved. ARM IHI 0011A

Figure 6-13 shows an example of a transfer following an invalid control vector. The TIC
performs a SEQUENTIAL transfer on the internal bus because the control signals have
not changed.

Figure 6-13 Invalid control vector

BD

BA

TCLK

TACK

A

A-TRAN S-TRANBTRAN[1:0] A-TRAN

TREQB

TREQA

TBUS

Write
data

C0 C1 C2

Address
vector

Control
vector

Write
vector

BSIZE

AMBA Test Methodology

ARM IHI 0011A © Copyright ARM Limited 1999. All rights reserved. 6-31

6.8.4 Write test vectors

Figure 6-14 shows an example of a single write vector following a single address vector.

Figure 6-14 Write test vectors

BD

BA

TCLK

TACK

A

A-TRANBTRAN[1:0] N-TRAN

TREQB

TREQA

TBUS

Write
data

C0 C1 C2

Address
vector

Write 1
vector

AMBA Test Methodology

6-32 © Copyright ARM Limited 1999. All rights reserved. ARM IHI 0011A

Figure 6-15 shows an example of extended write vectors following a single address
vector.

Figure 6-15 Extended write test vectors

BA

TCLK

TACK

A

A-TRANBTRAN[1:0] N-TRAN

TREQB

TREQA

TBUS

C0 C1 C2

Address
vector

Write
vector

Write
vector

BD Write
data

BWAIT

C3

AMBA Test Methodology

ARM IHI 0011A © Copyright ARM Limited 1999. All rights reserved. 6-33

Figure 6-16 shows an example of a single address vector, followed by a single read
vector and terminated with a single turnaround vector.

Figure 6-16 Read test vector

BA

TCLK

TACK

A

A-TRANBTRAN[1:0] N-TRAN

TREQB

TREQA

TBUS

C0 C1 C2

Address
vector

BD Read
data 1

C3 C4

Read
vector

A-TRAN

AMBA Test Methodology

6-34 © Copyright ARM Limited 1999. All rights reserved. ARM IHI 0011A

Figure 6-17 shows SEQUENTIAL transfers to non-incrementing addresses.

Figure 6-17 Burst write vectors with increment disabled

BD

BA

TCLK

TACK

A

A-TRAN N-TRAN N-TRAN N-TRAN N-TRANBTRAN[1:0] N-TRAN

Write 2
data

TREQB

TREQA

TBUS

Write 1
data

C0 C1 C2 C3 C4 C5

Address
vector

Write 1
vector

Write 2
vector

BWAIT

AMBA Test Methodology

ARM IHI 0011A © Copyright ARM Limited 1999. All rights reserved. 6-35

Figure 6-18 shows SEQUENTIAL transfers to incrementing addresses.

Figure 6-18 Burst write vectors with increment enabled

BD

BA

TCLK

TACK

A A + 4 A + 8 A + 12

A-TRAN S-TRAN S-TRAN S-TRAN S-TRANBTRAN[1:0] N-TRAN

TREQB

TREQA

TBUS

Write 1
data

Write 2
data

Write 3
data

Write 4
data

C0 C1 C2 C3 C4 C5

Address
vector

Write 1
vector

Write 2
vector

Write 3
vector

Write 4
vector

AMBA Test Methodology

6-36 © Copyright ARM Limited 1999. All rights reserved. ARM IHI 0011A

6.8.5 Changing burst direction

Figure 6-19 below shows a burst changing direction from read to write.

Figure 6-19 Changing burst direction

BD

BA

TCLK

TACK

A A + 4 A + 8 A + C

S-TRAN S-TRAN S-TRAN S-TRANBTRAN[1:0] A-TRAN

TREQB

TREQA

TBUS

Write
data 2

C0 C1 C2 C3 C4

Read
vector 1

Write
vector 1

Write
vector 2

Read
vector 2

Write
data 1

Read
data 1

Read
data 2

AMBA Test Methodology

ARM IHI 0011A © Copyright ARM Limited 1999. All rights reserved. 6-37

6.8.6 Exiting test mode

Figure 6-20 shows an exit from test mode.

Figure 6-20 Exiting test mode

BD

BA

TCLK

TACK

A

A-TRANBTRAN[1:0] A-TRAN

TREQB

TREQA

TBUS

C0 C1 C2 C3 C4

Write
vector

Address
vector

Write
data

Normal operation

AMBA Test Methodology

6-38 © Copyright ARM Limited 1999. All rights reserved. ARM IHI 0011A

ARM IHI 0011A © Copyright ARM Limited 1999. All rights reserved. Index-i

Index

The items in this index are listed in alphabetic order. The references given are to page numbers.

A
Active state 4-56
Address and control signals

ASB 4-27
timing 4-29

Address bus
AHB 2-3
APB 2-8
ASB 2-6, 4-27

Address decoding
AHB 3-19
ASB 4-14

Address vectors 6-8, 6-28
Address-only transfers 4-10, 4-59
AGNTx 2-6, 4-44

AHB 3-1
arbiter 1-7
arbitration signals 2-5
decoder 1-8
introduction to 1-7
master 1-7
operation 3-5
signal list 2-3
signal prefixes 2-2
slave 1-7

AHB/ASB or APB, when to use 1-13
AMBA signal names 2-2
AMBA system, typical 1-4
AMBA test interface 6-2
AMBA test methodology 6-1

APB 5-1
address bus 2-8
bridge 5-8
bridge interface diagram 5-8
bridge transfer 5-9
components 5-7
in a typical AMBA system 5-3
introduction to 1-10
read data bus 2-8
read transfers 5-6
select 2-8
signal list 2-8
signal prefixes 2-2
slave 5-11
slave interface diagram 5-11
strobe 2-8
timing parameters 5-7, 5-10
transfer direction 2-8
write data bus 2-8
write transfers 5-5

Arbiter
AHB 1-7
ASB 1-9, 4-20, 4-71

Arbitration and reset signals 4-60

Index

Index-ii © Copyright ARM Limited 1999. All rights reserved. ARM IHI 0011A

Arbitration signals
AHB 2-5
ASB 4-44

Arbitration, AHB 3-28
AREQx 2-6, 4-44
ASB 4-1

and APB 4-3
arbiter 1-9, 4-20, 4-71
arbiter interface diagram 4-71
arbiter timing parameters 4-73
bus master 4-52
bus master interface diagram 4-52
bus slave 4-47
bus slave interface 4-47
components 4-46
decoder 1-9, 4-63
decoder interface diagram 4-64
decoder timing diagrams 4-68
decoder timing parameters 4-69
description 4-4
introduction to 1-9
master 1-9
signal description 4-25
signal list 2-6
signal prefixes 2-2
slave 1-9
slave bus interface state

machine 4-48
test sequence 6-27
transfers 4-6

B
BA 2-6, 4-27
Back to back transfers 5-18
Backbone bus 1-4
Basic transfers 3-6
BCLK 2-6, 4-25
BD 2-6, 4-40
BERROR 2-6, 4-36
BLAST 2-6, 4-36
BLOK 2-6, 4-45
BnRES 2-6, 4-23, 4-25
BPROT 2-7, 4-28

encoding 4-28
BSIZE 2-7, 4-28

encoding 4-28
BTRAN 2-7, 4-26

encoding 4-26
timing 4-27

Burst operation 1-6, 3-11
Burst type, AHB 2-3
Burst vectors 6-10, 6-22

Bursts
incrementing 3-12
of read transfers 5-15
of write transfers 5-17
undefined-length 3-16
wrapping 3-12

Bus
backbone 1-4
choosing 1-12
peripheral 1-12

Bus clock
AHB 2-3
APB 2-8
ASB 2-6

Bus cycle 1-6
Bus grant 4-44

AHB 2-5
ASB 2-6

Bus interface state machine, ASB 4-54
Bus lock 4-45
Bus master

ASB 4-52
default 4-22
granted state machine 4-53
handover 3-29, 4-20
interface, ASB 4-52
main state machine 4-55
timing diagrams, ASB 4-57
timing parameters, ASB 4-60

Bus request 4-44
AHB 2-5, 3-28
ASB 2-6

Bus retract 4-36
Bus slave interface, ASB 4-47
Bus transfer 1-6
Busidle state 4-56
BWAIT 2-7, 4-36
BWRITE 2-7, 4-27

encoding 4-27

C
Choosing the right bus 1-12
Clock, ASB 4-25
Control signals 3-17
Control vectors 6-9, 6-14, 6-21, 6-29

bit definitions 6-25

D
Data bus

AHB 3-25
ASB 2-6, 4-40

Deadlock 3-37
Decode cycles 4-33, 4-65

Decoder
AHB 1-8
ASB 1-9, 4-63
state machine 4-65, 4-67
with decode cycles 4-33, 4-65
without decode cycles 4-34, 4-67

Default bus master 4-22
Direction of transfer

APB 2-8
ASB 2-7

Done response 4-16, 4-48
DSEL 4-33
DSELx 2-7

E
Early burst termination 3-12
Electrical characteristics 1-14
Enable state 5-5
Enter test mode 6-8, 6-17, 6-27
Error response 4-16, 4-36, 4-48

ASB 2-6
Exit from reset 4-23
Exit test mode 6-11, 6-24, 6-37
External test interface 6-4

G
Grant signal, AHB 3-28
Granted state machine 4-53

H
HADDR 2-3
Handover 3-29
Handover state 4-56
Handover, bus master 4-20
HBURST 2-3
HBUSREQx 2-5, 3-28
HCLK 2-3
HGRANTx 2-5, 3-28
HLOCKx 2-5, 3-28
HMASTER 2-5
HMASTLOCK 2-5
Hold state 4-56
HPROT 2-3, 3-17
HRDATA 2-4, 3-25
HREADY 2-4, 3-20
HRESETn 2-3
HRESP 2-4, 3-20
HSELx 2-4

Index

ARM IHI 0011A © Copyright ARM Limited 1999. All rights reserved. Index-iii

HSIZE 2-3, 3-17
HSPLITx 2-5
HTRANS 2-3
HWDATA 2-4, 3-25
HWRITE 2-3, 3-17

I
Idle state 4-56, 5-4
Incremental addressing 6-7
Incrementing burst 3-12
Interfacing

APB to AHB 5-14
APB to ASB 5-20
revD peripherals 5-22

L
Last response 4-17, 4-36, 4-48

ASB 2-6
Lock signal, AHB 3-28
Locked sequence, AHB 2-5
Locked transfers

AHB 2-5
ASB 2-6, 4-22

M
Master

AHB 1-7
ASB 1-9

Master number
AHB 2-5

Multi-master operation, ASB 4-19
Multiple transfers 3-8

N
Nonsequential transfers 4-7, 4-57

P
PADDR 2-8
PCLK 2-8
PENABLE 2-8
Peripheral bus 1-12
Peripheral test harness 6-2
PRDATA 2-8
PRESETn 2-8
Protection control

AHB 2-3, 3-17
ASB 2-7

Protection signals
ASB 4-28

PSELx 2-8
PWDATA 2-8
PWRITE 2-8

R
Read data bus

AHB 2-4, 3-25
APB 2-8

Read test vectors 6-10
Read transfers 6-20

APB 5-6, 5-14
burst of 5-15
to ASB 5-21

Reset 4-25
AHB 2-3
APB 2-8
ASB 2-6
exit from 4-23

Reset operation, ASB 4-23
Response encoding 3-21
Retract response 4-17, 4-48
Retract state 4-56
Retry transfers 3-38
Rev D peripherals 5-22

S
Select, APB 2-8
Sequential transfers 4-8, 4-58
Setup state 5-4
Signal list

AHB 2-3
APB 2-8
ASB 2-6

Signal names
AMBA 2-2

Signal prefixes
AHB 2-2
APB 2-2
ASB 2-2

Size encoding 3-17
Size of transfer

ASB 2-7
Slave

AHB 1-7
ASB 1-9
transfer response 3-20

Slave select
AHB 2-4
ASB 2-7, 4-33

Split completion request, AHB 2-5
Split transfers 3-35, 3-37
State diagram

TIC 6-12

State machine
ASB slave bus interface 4-48
bus interface, ASB 4-54
bus master, main 4-55
decoder 4-65, 4-67

Strobe, APB 2-8

T
TACK 6-4
TBUS 6-5
TCLK 6-5
Technology independence 1-14
Termination, early burst 3-12
Terminology 1-6
Test

transfer parameters 6-7
Test acknowledge 6-4
Test bus 6-5
Test bus request 6-4
Test clock 6-5
Test harness 6-2
Test Interface Controller

ASB 6-25
ASB, state diagram 6-25

Test Interface Controller (TIC) 6-3, 6-7
Test Interface Controller state

diagram 6-12
Test mode

entering 6-8, 6-17, 6-27
exiting 6-11, 6-24, 6-37

Test sequence 6-17
ASB 6-27

Test vector types 6-6
TIC 6-3, 6-7
Timing diagrams

APB bridge 5-9
APB slave 5-12
ASB arbiter 4-72
ASB bus slave 4-49
ASB decoder 4-68

Timing parameters 4-69
APB 5-7, 5-10
APB slave 5-13
ASB 4-46
ASB arbiter 4-73
ASB bus master 4-60
ASB bus slave 4-50

Timing specification 1-14
Transfer direction

AHB 2-3, 3-17
APB 2-8
ASB 2-7

Transfer direction, ASB 4-27

Index

Index-iv © Copyright ARM Limited 1999. All rights reserved. ARM IHI 0011A

Transfer done
AHB 2-4, 3-20

Transfer response 4-47
AHB 2-4, 3-20
ASB 4-16, 4-35
combinations 4-38
timing 4-39

Transfer size
AHB 2-3, 3-17
ASB 2-7, 4-28

Transfer type 3-9, 4-26
AHB 2-3
ASB 2-7
encoding 3-9

Transfers
address-only 4-10, 4-59
back to back 5-18
basic 3-6
multiple 3-8
nonsequential 4-7, 4-57
sequential 4-8, 4-58
split 3-35
with retry response 3-22
with wait states 3-7

TREQA 6-4
TREQB 6-4
Tristate

data bus 5-19
enable of address and control

signals 4-32
Two-cycle response 3-22
Type of transfer 3-9

ASB 2-7
Typical AMBA system 1-4, 5-3

AHB-based 3-3
ASB-based 4-2

U
Undefined-length burst 3-16

W
Wait response 4-16, 4-36, 4-47

ASB 2-7
Wait states 3-7
Wrapping burst 3-12
Write data bus

AHB 2-4, 3-25
APB 2-8

Write test vectors 6-9, 6-19, 6-31
Write transfers

APB 5-5, 5-16
burst of 5-17
from ASB 5-20

	AMBA Specification
	Preface
	About this document
	Feedback

	1 Introduction to the AMBA Buses
	1.1 Overview of the AMBA specification
	1.1.1 Advanced High-performance Bus (AHB)
	1.1.2 Advanced System Bus (ASB)
	1.1.3 Advanced Peripheral Bus (APB)

	1.2 Objectives of the AMBA specification
	1.3 A typical AMBA-based microcontroller
	1.4 Terminology
	1.5 Introducing the AMBA AHB
	1.6 Introducing the AMBA ASB
	1.7 Introducing the AMBA APB
	1.8 Choosing the right bus for your system
	1.8.1 Choice of system bus
	1.8.2 System bus and peripheral bus
	1.8.3 When to use AMBA AHB/ASB or APB

	1.9 Notes on the AMBA specification
	1.9.1 Technology independence
	1.9.2 Electrical characteristics
	1.9.3 Timing specification

	2 AMBA Signals
	2.1 AMBA signal names
	2.1.1 AHB signal prefixes
	2.1.2 ASB signal prefixes
	2.1.3 APB signal prefixes

	2.2 AMBA AHB signal list
	2.3 AMBA ASB signal list
	2.4 AMBA APB signal list

	3 AMBA AHB
	3.1 About the AMBA AHB
	3.1.1 A typical AMBA AHB-based microcontroller

	3.2 Bus interconnection
	3.3 Overview of AMBA AHB operation
	3.4 Basic transfer
	3.5 Transfer type
	3.6 Burst operation
	3.6.1 Early burst termination

	3.7 Control signals
	3.7.1 Transfer direction
	3.7.2 Transfer size
	3.7.3 Protection control

	3.8 Address decoding
	3.9 Slave transfer responses
	3.9.1 Transfer done
	3.9.2 Transfer response
	3.9.3 Two-cycle response
	3.9.4 Error response
	3.9.5 Split and retry

	3.10 Data buses
	3.10.1 HWDATA[31:0]
	3.10.2 HRDATA[31:0]
	3.10.3 Endianness

	3.11 Arbitration
	3.11.1 Signal description
	3.11.2 Requesting bus access
	3.11.3 Granting bus access
	3.11.4 Early burst termination
	3.11.5 Locked transfers
	3.11.6 Default bus master

	3.12 Split transfers
	3.12.1 Split transfer sequence
	3.12.2 Multiple split transfers
	3.12.3 Preventing deadlock
	3.12.4 Bus handover with split transfers

	3.13 Reset
	3.14 About the AHB data bus width
	3.15 Implementing a narrow slave on a wider bus
	3.16 Implementing a wide slave on a narrow bus
	3.16.1 Masters

	3.17 About the AHB AMBA components
	3.18 AHB bus slave
	3.18.1 Interface diagram
	3.18.2 Timing diagrams
	3.18.3 Timing parameters

	3.19 AHB bus master
	3.19.1 Interface diagram
	3.19.2 Bus master timing diagrams
	3.19.3 Timing parameters

	3.20 AHB arbiter
	3.20.1 Interface diagram
	3.20.2 Timing diagrams
	3.20.3 Timing parameters

	3.21 AHB decoder
	3.21.1 Interface diagram
	3.21.2 Timing diagram
	3.21.3 Timing parameter

	4 AMBA ASB
	4.1 About the AMBA ASB
	4.1.1 A typical AMBA ASB-based microcontroller
	4.1.2 AMBA ASB and APB

	4.2 AMBA ASB description
	4.3 ASB transfers
	4.3.1 Nonsequential transfer
	4.3.2 Sequential transfer
	4.3.3 Address-only transfer

	4.4 Address decode
	4.5 Transfer response
	4.6 Multi-master operation
	4.6.1 Arbiter
	4.6.2 Bus master handover
	4.6.3 Default bus master
	4.6.4 Locked transfers

	4.7 Reset operation
	4.7.1 Exit from reset

	4.8 Description of ASB signals
	4.8.1 Clock
	4.8.2 Reset
	4.8.3 Transfer type
	4.8.4 Address and control information
	4.8.5 Address bus
	4.8.6 Transfer direction
	4.8.7 Transfer size
	4.8.8 Protection information
	4.8.9 Address and control signal timing
	4.8.10 Tristate enable of address and control signals
	4.8.11 Slave select signals
	4.8.12 Transfer response
	4.8.13 Data bus
	4.8.14 Arbitration signals

	4.9 About the ASB AMBA components
	4.10 ASB bus slave
	4.10.1 Interface diagram
	4.10.2 Bus slave interface description
	4.10.3 Timing diagrams
	4.10.4 Timing parameters

	4.11 ASB bus master
	4.11.1 Interface diagram
	4.11.2 Bus master interface description
	4.11.3 Bus interface state machine
	4.11.4 Bus master timing diagrams
	4.11.5 Timing parameters

	4.12 ASB decoder
	4.12.1 Interface diagram
	4.12.2 Decoder description
	4.12.3 Timing diagrams
	4.12.4 Timing parameters

	4.13 ASB arbiter
	4.13.1 Interface diagram
	4.13.2 Arbiter description
	4.13.3 Timing diagrams
	4.13.4 Timing parameters

	5 AMBA APB
	5.1 About the AMBA APB
	5.1.1 A typical AMBA-based microcontroller

	5.2 APB specification
	5.2.1 State diagram
	5.2.2 Write transfer
	5.2.3 Read transfer

	5.3 About the APB AMBA components
	5.4 APB bridge
	5.4.1 Interface diagram
	5.4.2 APB bridge description
	5.4.3 Timing diagrams
	5.4.4 Timing parameters

	5.5 APB slave
	5.5.1 Interface diagram
	5.5.2 APB slave description
	5.5.3 Timing diagrams
	5.5.4 Timing parameters

	5.6 Interfacing APB to AHB
	5.6.1 Read transfers
	5.6.2 Write transfers
	5.6.3 Back to back transfers
	5.6.4 Tristate data bus implementations

	5.7 Interfacing APB to ASB
	5.7.1 Write transfer
	5.7.2 Read transfer

	5.8 Interfacing rev D APB peripherals to rev 2.0 APB

	6 AMBA Test Methodology
	6.1 About the AMBA test interface
	6.2 External interface
	6.2.1 Test bus request A
	6.2.2 Test bus request B
	6.2.3 Test acknowledge
	6.2.4 Test clock
	6.2.5 Test bus

	6.3 Test vector types
	6.4 Test interface controller
	6.4.1 Test transfer parameters
	6.4.2 Incremental addressing
	6.4.3 Entering test mode
	6.4.4 Address vectors
	6.4.5 Control vector
	6.4.6 Write test vectors
	6.4.7 Read test vectors
	6.4.8 Burst vectors
	6.4.9 Changing a burst direction
	6.4.10 Exiting test mode

	6.5 The AHB Test Interface Controller
	6.5.1 Control vector

	6.6 Example AMBA AHB test sequences
	6.6.1 Entering test mode
	6.6.2 Write test vectors
	6.6.3 Read transfers
	6.6.4 Control vector
	6.6.5 Burst vectors
	6.6.6 Read-to-write and write-to-read
	6.6.7 Exiting test mode

	6.7 The ASB test interface controller
	6.7.1 Control vector bit definitions

	6.8 Example AMBA ASB test sequences
	6.8.1 Entering test mode
	6.8.2 Address vectors
	6.8.3 Control vectors
	6.8.4 Write test vectors
	6.8.5 Changing burst direction
	6.8.6 Exiting test mode

