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Preface

This preface introduces the Advanced Microcontroller Bus Architecture (AMBA) 
specification. It contains the following sections:

• About this document on page iv

• Feedback on page vii.
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About this document

This document is the AMBA specification.

Intended audience

This document has been written to help experienced hardware and software engineers 
to design modules that conform to the AMBA specification.

Organization

This document is organized into the following chapters:

Chapter 1 Introduction to the AMBA Buses

Read this chapter for an overview of the AMBA buses.

Chapter 2 AMBA Signals

Read this chapter for a description of the signals used by AMBA devices.

Chapter 3 AMBA AHB

Read this chapter for an introduction to the AMBA Advanced High-
performance Bus.

Chapter 4 AMBA ASB

Read this chapter for an introduction to the AMBA Advanced System 
Bus.

Chapter 5 AMBA APB

Read this chapter for an introduction to the AMBA Advanced Peripheral 
Bus.

Chapter 6 AMBA Test Methodology

Read this chapter for an introduction to the test methodology used in 
AMBA buses.
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Typographical conventions

The following typographical conventions are used in this document:

bold Highlights ARM processor signal names within text, and interface 
elements such as menu names. May also be used for emphasis in 
descriptive lists where appropriate.

italic Highlights special terminology, cross-references and citations.

typewriter Denotes text that may be entered at the keyboard, such as 
commands, file names and program names, and source code.

typewriter Denotes a permitted abbreviation for a command or option. The 
underlined text may be entered instead of the full command or 
option name.

typewriter italic
Denotes arguments to commands or functions where the argument 
is to be replaced by a specific value.

typewriter bold
Denotes language keywords when used outside example code.



vi © Copyright ARM Limited 1999. All rights reserved. ARM IHI 0011A

Timing diagram conventions

This manual contains one or more timing diagrams. The following key explains the 
components used in these diagrams. Any variations are clearly labelled when they 
occur. Therefore, no additional meaning should be attached unless specifically stated.

Key to timing diagram conventions

Shaded bus and signal areas are undefined, so the bus or signal can assume any value 
within the shaded area at that time. The actual level is unimportant and does not affect 
normal operation.

Clock

Bus stable

HIGH to LOW

Transient

Bus to high impedance

Bus change

HIGH/LOW to HIGH

High impedance to stable bus
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Feedback

ARM Limited welcomes feedback both on AMBA and the AMBA specification.

Feedback on this document

If you have any comments on this document, please send email to errata@arm.com 
giving:

• the document title

• the document number

• the page number(s) to which your comments refer

• a concise explanation of your comments.

General suggestions for additions and improvements are also welcome.

Feedback on the AMBA Specification

If you have any comments or suggestions about this product, please contact your 
supplier giving:

• the product name

• a concise explanation of your comments.
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Chapter 1
Introduction to the AMBA Buses

This chapter introduces the Advanced Microcontroller Bus Architecture (AMBA) 
specification. The following sections are included:

• Overview of the AMBA specification on page 1-2

• Objectives of the AMBA specification on page 1-3

• A typical AMBA-based microcontroller on page 1-4

• Terminology on page 1-6

• Introducing the AMBA AHB on page 1-7

• Introducing the AMBA ASB on page 1-9

• Introducing the AMBA APB on page 1-10

• Choosing the right bus for your system on page 1-12

• Notes on the AMBA specification on page 1-14.
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1.1 Overview of the AMBA specification

The Advanced Microcontroller Bus Architecture (AMBA) specification defines an on-
chip communications standard for designing high-performance embedded 
microcontrollers. 

Three distinct buses are defined within the AMBA specification: 

• the Advanced High-performance Bus (AHB)

• the Advanced System Bus (ASB)

• the Advanced Peripheral Bus (APB).

A test methodology is included with the AMBA specification which provides an 
infrastructure for modular macrocell test and diagnostic access.

1.1.1 Advanced High-performance Bus (AHB)

The AMBA AHB is for high-performance, high clock frequency system modules.

The AHB acts as the high-performance system backbone bus. AHB supports the 
efficient connection of processors, on-chip memories and off-chip external memory 
interfaces with low-power peripheral macrocell functions. AHB is also specified to 
ensure ease of use in an efficient design flow using synthesis and automated test 
techniques.

1.1.2 Advanced System Bus (ASB)

The AMBA ASB is for high-performance system modules.

AMBA ASB is an alternative system bus suitable for use where the high-performance 
features of AHB are not required. ASB also supports the efficient connection of 
processors, on-chip memories and off-chip external memory interfaces with low-power 
peripheral macrocell functions. 

1.1.3 Advanced Peripheral Bus (APB)

The AMBA APB is for low-power peripherals.

AMBA APB is optimized for minimal power consumption and reduced interface 
complexity to support peripheral functions. APB can be used in conjunction with either 
version of the system bus.
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1.2 Objectives of the AMBA specification

The AMBA specification has been derived to satisfy four key requirements:

• to facilitate the right-first-time development of embedded microcontroller 
products with one or more CPUs or signal processors

• to be technology-independent and ensure that highly reusable peripheral and 
system macrocells can be migrated across a diverse range of IC processes and be 
appropriate for full-custom, standard cell and gate array technologies

• to encourage modular system design to improve processor independence, 
providing a development road-map for advanced cached CPU cores and the 
development of peripheral libraries

• to minimize the silicon infrastructure required to support efficient on-chip and 
off-chip communication for both operation and manufacturing test.
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1.3 A typical AMBA-based microcontroller

An AMBA-based microcontroller typically consists of a high-performance system 
backbone bus (AMBA AHB or AMBA ASB), able to sustain the external memory 
bandwidth, on which the CPU, on-chip memory and other Direct Memory Access 
(DMA) devices reside. This bus provides a high-bandwidth interface between the 
elements that are involved in the majority of transfers. Also located on the high-
performance bus is a bridge to the lower bandwidth APB, where most of the peripheral 
devices in the system are located (see Figure 1-1).

Figure 1-1 A typical AMBA system

AMBA APB provides the basic peripheral macrocell communications infrastructure as 
a secondary bus from the higher bandwidth pipelined main system bus. Such 
peripherals typically:

• have interfaces which are memory-mapped registers

• have no high-bandwidth interfaces

• are accessed under programmed control.

* High performance
* Pipelined operation
* Multiple bus masters
* Burst transfers
* Split transactions

* High performance
* Pipelined operation
* Multiple bus masters

* Low power
* Latched address and control
* Simple interface
* Suitable for many peripherals
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The external memory interface is application-specific and may only have a narrow data 
path, but may also support a test access mode which allows the internal AMBA AHB, 
ASB and APB modules to be tested in isolation with system-independent test sets.
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1.4 Terminology

The following terms are used throughout this specification.

Bus cycle A bus cycle is a basic unit of one bus clock period and for the 
purpose of AMBA AHB or APB protocol descriptions is defined 
from rising-edge to rising-edge transitions. An ASB bus cycle is 
defined from falling-edge to falling-edge transitions. Bus signal 
timing is referenced to the bus cycle clock.

Bus transfer An AMBA ASB or AHB bus transfer is a read or write operation 
of a data object, which may take one or more bus cycles. The bus 
transfer is terminated by a completion response from the 
addressed slave. 

The transfer sizes supported by AMBA ASB include byte (8-bit), 
halfword (16-bit) and word (32-bit). AMBA AHB additionally 
supports wider data transfers, including 64-bit and 128-bit 
transfers. An AMBA APB bus transfer is a read or write operation 
of a data object, which always requires two bus cycles.

Burst operation A burst operation is defined as one or more data transactions, 
initiated by a bus master, which have a consistent width of 
transaction to an incremental region of address space. The 
increment step per transaction is determined by the width of 
transfer (byte, halfword, word). No burst operation is supported 
on the APB.
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1.5 Introducing the AMBA AHB

AHB is a new generation of AMBA bus which is intended to address the requirements 
of high-performance synthesizable designs. It is a high-performance system bus that 
supports multiple bus masters and provides high-bandwidth operation.

AMBA AHB implements the features required for high-performance, high clock 
frequency systems including:

• burst transfers

• split transactions

• single-cycle bus master handover

• single-clock edge operation

• non-tristate implementation

• wider data bus configurations (64/128 bits).

Bridging between this higher level of bus and the current ASB/APB can be done 
efficiently to ensure that any existing designs can be easily integrated.

An AMBA AHB design may contain one or more bus masters, typically a system would 
contain at least the processor and test interface. However, it would also be common for 
a Direct Memory Access (DMA) or Digital Signal Processor (DSP) to be included as 
bus masters.

The external memory interface, APB bridge and any internal memory are the most 
common AHB slaves. Any other peripheral in the system could also be included as an 
AHB slave. However, low-bandwidth peripherals typically reside on the APB.

A typical AMBA AHB system design contains the following components:

AHB master A bus master is able to initiate read and write operations by 
providing an address and control information. Only one bus 
master is allowed to actively use the bus at any one time.

AHB slave A bus slave responds to a read or write operation within a given 
address-space range. The bus slave signals back to the active 
master the success, failure or waiting of the data transfer.

AHB arbiter The bus arbiter ensures that only one bus master at a time is 
allowed to initiate data transfers. Even though the arbitration 
protocol is fixed, any arbitration algorithm, such as highest 
priority or fair access can be implemented depending on the 
application requirements.

An AHB would include only one arbiter, although this would be 
trivial in single bus master systems.
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AHB decoder The AHB decoder is used to decode the address of each transfer 
and provide a select signal for the slave that is involved in the 
transfer.

A single centralized decoder is required in all AHB 
implementations.
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1.6 Introducing the AMBA ASB

ASB is the first generation of AMBA system bus. ASB sits above the current APB and 
implements the features required for high-performance systems including:

• burst transfers

• pipelined transfer operation

• multiple bus master.

A typical AMBA ASB system may contain one or more bus masters. For example, at 
least the processor and test interface. However, it would also be common for a Direct 
Memory Access (DMA) or Digital Signal Processor (DSP) to be included as bus 
masters.

The external memory interface, APB bridge and any internal memory are the most 
common ASB slaves. Any other peripheral in the system could also be included as an 
ASB slave. However, low-bandwidth peripherals typically reside on the APB.

An AMBA ASB system design typically contains the following components:

ASB master A bus master is able to initiate read and write operations by 
providing an address and control information. Only one bus 
master is allowed to actively use the bus at any one time.

ASB slave A bus slave responds to a read or write operation within a given 
address-space range. The bus slave signals back to the active 
master the success, failure or waiting of the data transfer.

ASB decoder The bus decoder performs the decoding of the transfer addresses 
and selects slaves appropriately. The bus decoder also ensures that 
the bus remains operational when no bus transfers are required.

A single centralized decoder is required in all ASB 
implementations.

ASB arbiter The bus arbiter ensures that only one bus master at a time is 
allowed to initiate data transfers. Even though the arbitration 
protocol is fixed, any arbitration algorithm, such as highest 
priority or fair access can be implemented depending on the 
application requirements.

An ASB would include only one arbiter, although this would be 
trivial in single bus master systems.
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1.7 Introducing the AMBA APB

The APB is part of the AMBA hierarchy of buses and is optimized for minimal power 
consumption and reduced interface complexity.

The AMBA APB appears as a local secondary bus that is encapsulated as a single AHB 
or ASB slave device. APB provides a low-power extension to the system bus which 
builds on AHB or ASB signals directly. 

The APB bridge appears as a slave module which handles the bus handshake and 
control signal retiming on behalf of the local peripheral bus. By defining the APB 
interface from the starting point of the system bus, the benefits of the system diagnostics 
and test methodology can be exploited. 

The AMBA APB should be used to interface to any peripherals which are low 
bandwidth and do not require the high performance of a pipelined bus interface.

The latest revision of the APB is specified so that all signal transitions are only related 
to the rising edge of the clock. This improvement ensures the APB peripherals can be 
integrated easily into any design flow, with the following advantages:

• high-frequency operation easier to achieve 

• performance is independent of the mark-space ratio of the clock

• static timing analysis is simplified by the use of a single clock edge

• no special considerations are required for automatic test insertion

• many Application Specific Integrated Circuit (ASIC) libraries have a better 
selection of rising edge registers

• easy integration with cycle-based simulators.

These changes to the APB also make it simpler to interface it to the new AHB.

An AMBA APB implementation typically contains a single APB bridge which is 
required to convert AHB or ASB transfers into a suitable format for the slave devices 
on the APB. The bridge provides latching of all address, data and control signals, as 
well as providing a second level of decoding to generate slave select signals for the APB 
peripherals.

All other modules on the APB are APB slaves. The APB slaves have the following 
interface specification:

• address and control valid throughout the access (unpipelined)
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• zero-power interface during non-peripheral bus activity (peripheral bus is static 
when not in use)

• timing can be provided by decode with strobe timing (unclocked interface)

• write data valid for the whole access (allowing glitch-free transparent latch 
implementations).
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1.8 Choosing the right bus for your system

Before deciding on which bus or buses you should use in your system, you should 
consider the following:

• Choice of system bus

• System bus and peripheral bus

• When to use AMBA AHB/ASB or APB on page 1-13

1.8.1 Choice of system bus

Both AMBA AHB and ASB are available for use as the main system bus. Typically the 
choice of system bus will depend on the interface provided by the system modules 
required.

The AHB is recommended for all new designs, not only because it provides a higher-
bandwidth solution, but also because the single-clock-edge protocol results in a 
smoother integration with design automation tools used during a typical ASIC 
development.

1.8.2 System bus and peripheral bus

Building all peripherals as fully functional AHB or ASB modules is feasible but may 
not always be desirable: 

• In designs with a large number of peripheral macrocells the increased bus 
loading may increase power dissipation and sacrifice performance.

• Where timing analysis is required, the slowest element on the bus will limit the 
maximum performance.

• Many simple peripheral macrocells need latched addresses and control signals as 
opposed to the high-bandwidth macrocells which benefit from pipelined 
signalling. 

• Many peripheral functions simply require a selection strobe which conveys 
macrocell selection and read/write bus operation, without the requirement to 
broadcast the high-frequency clock signal to every peripheral.



Introduction to the AMBA Buses

ARM IHI 0011A © Copyright ARM Limited 1999. All rights reserved. 1-13

1.8.3 When to use AMBA AHB/ASB or APB

A full AHB or ASB interface is used for: 

• bus masters 

• on-chip memory blocks

• external memory interfaces

• high-bandwidth peripherals with FIFO interfaces 

• DMA slave peripherals.

A simple APB interface is recommended for: 

• simple register-mapped slave devices 

• very low power interfaces where clocks cannot be globally routed 

• grouping narrow-bus peripherals to avoid loading the system bus. 



Introduction to the AMBA Buses

1-14 © Copyright ARM Limited 1999. All rights reserved. ARM IHI 0011A

1.9 Notes on the AMBA specification

The following points should be considered when reading the AMBA specification: 

• Technology independence

• Electrical characteristics

• Timing specification.

1.9.1 Technology independence

AMBA is a technology-independent on-chip protocol. The specification only details the 
bus protocol at the clock cycle level.

1.9.2 Electrical characteristics

No information regarding the electrical characteristics is supplied within the AMBA 
specification as this will be entirely dependent on the manufacturing process 
technology that is selected for the design.

1.9.3 Timing specification

The AMBA protocol defines the behavior of various signals at the cycle level. The exact 
timing requirements will depend on the process technology used and the frequency of 
operation.

Because the exact timing requirements are not defined by the AMBA protocol, the 
system integrator is given maximum flexibility in allocating the signal timing budget 
amongst the various modules on the bus.
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Chapter 2
AMBA Signals

This chapter introduces the AMBA signals. It contains the following sections:

• AMBA signal names on page 2-2

• AMBA AHB signal list on page 2-3

• AMBA ASB signal list on page 2-6

• AMBA APB signal list on page 2-8.
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2.1 AMBA signal names

All AMBA signals are named such that the first letter of the name indicates which bus 
the signal is associated with. A lower case n in the signal name indicates that the signal 
is active LOW, otherwise signal names are always all upper case. 

Test signals have a prefix T regardless of the bus type. More information on test signals 
can be found in Chapter 6 AMBA Test Methodology.

2.1.1 AHB signal prefixes
H indicates an AHB signal.

For example, HREADY is the signal used to indicate that the data portion of an AHB 
transfer can complete. It is active HIGH.

2.1.2 ASB signal prefixes
A is a unidirectional signal between ASB bus masters and the arbiter

B is an ASB signal

D is a unidirectional ASB decoder signal.

For example, BnRES is the ASB reset signal. It is active LOW.

2.1.3 APB signal prefixes
P indicates an APB signal.

For example, PCLK is the main clock used by the APB.
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2.2 AMBA AHB signal list

This section contains an overview of the AMBA AHB signals (see Table 2-1). A full 
description of each of the signals can be found in later sections of this document.

All signals are prefixed with the letter H, ensuring that the AHB signals are 
differentiated from other similarly named signals in a system design.

Table 2-1 AMBA AHB signals

Name Source Description

HCLK
Bus clock

Clock source This clock times all bus transfers. All signal 
timings are related to the rising edge of HCLK.

HRESETn
Reset

Reset controller The bus reset signal is active LOW and is used to 
reset the system and the bus. This is the only active 
LOW signal.

HADDR[31:0]
Address bus

Master The 32-bit system address bus.

HTRANS[1:0]
Transfer type

Master Indicates the type of the current transfer, which can 
be NONSEQUENTIAL, SEQUENTIAL, IDLE or 
BUSY.

HWRITE
Transfer direction

Master When HIGH this signal indicates a write transfer 
and when LOW a read transfer.

HSIZE[2:0]
Transfer size

Master Indicates the size of the transfer, which is typically 
byte (8-bit), halfword (16-bit) or word (32-bit). The 
protocol allows for larger transfer sizes up to a 
maximum of 1024 bits.

HBURST[2:0]
Burst type

Master Indicates if the transfer forms part of a burst. Four, 
eight and sixteen beat bursts are supported and the 
burst may be either incrementing or wrapping.

HPROT[3:0]
Protection control

Master The protection control signals provide additional 
information about a bus access and are primarily 
intended for use by any module that wishes to 
implement some level of protection.
The signals indicate if the transfer is an opcode 
fetch or data access, as well as if the transfer is a 
privileged mode access or user mode access. For 
bus masters with a memory management unit these 
signals also indicate whether the current access is 
cacheable or bufferable.
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HWDATA[31:0]
Write data bus

Master The write data bus is used to transfer data from the 
master to the bus slaves during write operations. A 
minimum data bus width of 32 bits is 
recommended. However, this may easily be 
extended to allow for higher bandwidth operation.

HSELx
Slave select

Decoder Each AHB slave has its own slave select signal and 
this signal indicates that the current transfer is 
intended for the selected slave. This signal is 
simply a combinatorial decode of the address bus.

HRDATA[31:0]
Read data bus

Slave The read data bus is used to transfer data from bus 
slaves to the bus master during read operations. A 
minimum data bus width of 32 bits is 
recommended. However, this may easily be 
extended to allow for higher bandwidth operation.

HREADY
Transfer done

Slave When HIGH the HREADY signal indicates that a 
transfer has finished on the bus. This signal may be 
driven LOW to extend a transfer.
Note: Slaves on the bus require HREADY as both 
an input and an output signal.

HRESP[1:0]
Transfer response

Slave The transfer response provides additional 
information on the status of a transfer.
Four different responses are provided, OKAY, 
ERROR, RETRY and SPLIT.

Table 2-1 AMBA AHB signals (continued)

Name Source Description
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AMBA AHB also has a number of signals required to support multiple bus master 
operation (see Table 2-2). Many of these arbitration signals are dedicated point to point 
links and in Table 2-2 the suffix x indicates the signal is from module X. For example 
there will be a number of HBUSREQx signals in a system, such as HBUSREQarm, 
HBUSREQdma and HBUSREQtic.

Table 2-2 Arbitration signals

Name Source Description

HBUSREQx
Bus request

Master A signal from bus master x to the bus arbiter which 
indicates that the bus master requires the bus. There is an 
HBUSREQx signal for each bus master in the system, up to 
a maximum of 16 bus masters.

HLOCKx
Locked transfers

Master When HIGH this signal indicates that the master requires 
locked access to the bus and no other master should be 
granted the bus until this signal is LOW.

HGRANTx
Bus grant

Arbiter This signal indicates that bus master x is currently the 
highest priority master. Ownership of the address/control 
signals changes at the end of a transfer when HREADY is 
HIGH, so a master gets access to the bus when both 
HREADY and HGRANTx are HIGH.

HMASTER[3:0]
Master number

Arbiter These signals from the arbiter indicate which bus master is 
currently performing a transfer and is used by the slaves 
which support SPLIT transfers to determine which master 
is attempting an access.
The timing of HMASTER is aligned with the timing of the 
address and control signals.

HMASTLOCK
Locked sequence

Arbiter Indicates that the current master is performing a locked 
sequence of transfers. This signal has the same timing as the 
HMASTER signal.

HSPLITx[15:0]
Split completion 
request

Slave
(SPLIT-
capable)

This 16-bit split bus is used by a slave to indicate to the 
arbiter which bus masters should be allowed to re-attempt a 
split transaction.
Each bit of this split bus corresponds to a single bus master.
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2.3 AMBA ASB signal list

Table 2-3 lists the AMBA ASB signals.

Table 2-3 AMBA ASB signals

Name Description

AGNTx
Bus grant

A signal from the bus arbiter to a bus master x which indicates that the 
bus master will be granted the bus when BWAIT is LOW. There is an 
AGNTx signal for each bus master in the system, as well as an 
associated bus request signal, AREQx.

AREQx
Bus request

A signal from bus master x to the bus arbiter which indicates that the 
bus master requires the bus. There is an AREQx signal for each bus 
master in the system, as well as an associated bus grant signal, AGNTx.

BA[31:0]
Address bus

The system address bus, which is driven by the active bus master.

BCLK
Bus clock

This clock times all bus transfers. Both the LOW phase and HIGH 
phase of BCLK are used to control transfers on the bus.

BD[31:0]
Data bus

This is the bidirectional system data bus. The data bus is driven by the 
current bus master during write transfers and by the selected bus slave 
during read transfers.

BERROR
Error response

A transfer error is indicated by the selected bus slave using the 
BERROR signal. When BERROR is HIGH a transfer error has 
occurred, when BERROR is LOW then the transfer is successful. This 
signal is also used in combination with the BLAST signal to indicate a 
bus retract operation.
When no slave is selected this signal is driven by the bus decoder.

BLAST
Last response

This signal is driven by the selected bus slave to indicate if the current 
transfer should be the last of a burst sequence. When BLAST is HIGH 
the decoder must allow sufficient time for address decoding. When 
BLAST is LOW, the next transfer may continue a burst sequence. This 
signal is also used in combination with the BERROR signal to indicate 
a bus retract operation.
When no slave is selected this signal is driven by the bus decoder.

BLOK
Locked transfers

When HIGH this signal indicates that the current transfer and the next 
transfer are to be indivisible and no other bus master should be given 
access to the bus. This signal is used by the bus arbiter.
This signal is driven by the active bus master.

BnRES
Reset

The bus reset signal is active LOW and is used to reset the system and 
the bus. This is the only active LOW signal.



AMBA Signals

ARM IHI 0011A © Copyright ARM Limited 1999. All rights reserved. 2-7

BPROT[1:0]
Protection control

The protection control signals provide additional information about a 
bus access and are primarily intended for use by a bus decoder when 
acting as a basic protection unit. The signals indicate if the transfer is 
an opcode fetch or data access, as well as if the transfer is a privileged 
mode access or user mode access. The signals are driven by the active 
bus master and have the same timing as the address bus.

BSIZE[1:0]
Transfer size

The transfer size signals indicate the size of the transfer, which may be 
byte, halfword or word.
The signals are driven by the active bus master and have the same 
timing as the address bus.

BTRAN[1:0]
Transfer type

These signals indicate the type of the next transaction, which may be 
ADDRESS-ONLY, NONSEQUENTIAL or SEQUENTIAL. These 
signals are driven by a bus master when the appropriate AGNTx signal 
is asserted.

BWAIT
Wait response

This signal is driven by the selected bus slave to indicate if the current 
transfer may complete. If BWAIT is HIGH a further bus cycle is 
required, if BWAIT is LOW then the transfer may complete in the 
current bus cycle.
When no slave is selected this signal is driven by the bus decoder.

BWRITE
Transfer direction

When HIGH this signal indicates a write transfer and when LOW a 
read transfer. This signal is driven by the active bus master and has the 
same timing as the address bus.

DSELx
Slave select

A signal from the bus decoder to a bus slave x which indicates that the 
slave device is selected and a data transfer is required. There is a 
DSELx signal for each ASB bus slave.

Table 2-3 AMBA ASB signals (continued)

Name Description
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2.4 AMBA APB signal list

All AMBA APB signals use the single letter P prefix. Some APB signals, such as the 
clock, may be connected directly to the system bus equivalent signal.

Table 2-4 shows the list of AMBA APB signal names, along with a description of how 
each of the signals is used.

Table 2-4 AMBA APB signals

Name Description

PCLK
Bus clock

The rising edge of PCLK is used to time all transfers on the 
APB.

PRESETn
APB reset

The APB bus reset signal is active LOW and this signal will 
normally be connected directly to the system bus reset signal.

PADDR[31:0]
APB address bus

This is the APB address bus, which may be up to 32-bits wide 
and is driven by the peripheral bus bridge unit.

PSELx
APB select

A signal from the secondary decoder, within the peripheral bus 
bridge unit, to each peripheral bus slave x. This signal indicates 
that the slave device is selected and a data transfer is required. 
There is a PSELx signal for each bus slave.

PENABLE
APB strobe

This strobe signal is used to time all accesses on the peripheral 
bus. The enable signal is used to indicate the second cycle of an 
APB transfer. The rising edge of PENABLE occurs in the middle 
of the APB transfer.

PWRITE
APB transfer direction

When HIGH this signal indicates an APB write access and when 
LOW a read access.

PRDATA
APB read data bus

The read data bus is driven by the selected slave during read 
cycles (when PWRITE is LOW). The read data bus can be up to 
32-bits wide.

PWDATA
APB write data bus

The write data bus is driven by the peripheral bus bridge unit 
during write cycles (when PWRITE is HIGH). The write data 
bus can be up to 32-bits wide.
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Chapter 3
AMBA AHB

This chapter describes the Advanced High-performance Bus (AHB) architecture. It 
contains the following sections:

• About the AMBA AHB on page 3-3

• Bus interconnection on page 3-4

• Overview of AMBA AHB operation on page 3-5

• Basic transfer on page 3-6

• Transfer type on page 3-9

• Burst operation on page 3-11

• Control signals on page 3-17

• Address decoding on page 3-19

• Slave transfer responses on page 3-20

• Data buses on page 3-25

• Arbitration on page 3-28

• Split transfers on page 3-35

• Reset on page 3-40

• About the AHB data bus width on page 3-41

• Implementing a narrow slave on a wider bus on page 3-42

• Implementing a wide slave on a narrow bus on page 3-43



AMBA AHB

3-2 © Copyright ARM Limited 1999. All rights reserved. ARM IHI 0011A

• About the AHB AMBA components on page 3-44

• AHB bus slave on page 3-45

• AHB bus master on page 3-49

• AHB decoder on page 3-57

• AHB arbiter on page 3-53.
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3.1 About the AMBA AHB

AHB is a new generation of AMBA bus which is intended to address the requirements 
of high-performance synthesizable designs. AMBA AHB is a new level of bus which 
sits above the APB and implements the features required for high-performance, high 
clock frequency systems including:

• burst transfers

• split transactions

• single cycle bus master handover

• single clock edge operation

• non-tristate implementation

• wider data bus configurations (64/128 bits).

3.1.1 A typical AMBA AHB-based microcontroller

An AMBA-based microcontroller typically consists of a high-performance system 
backbone bus, able to sustain the external memory bandwidth, on which the CPU and 
other Direct Memory Access (DMA) devices reside, plus a bridge to a narrower APB 
bus on which the lower bandwidth peripheral devices are located. Figure 3-1 shows 
both AHB and APB in a typical AMBA system.

Figure 3-1 A typical AMBA AHB-based system
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3.2 Bus interconnection

The AMBA AHB bus protocol is designed to be used with a central multiplexor 
interconnection scheme. Using this scheme all bus masters drive out the address and 
control signals indicating the transfer they wish to perform and the arbiter determines 
which master has its address and control signals routed to all of the slaves. A central 
decoder is also required to control the read data and response signal multiplexor, which 
selects the appropriate signals from the slave that is involved in the transfer.

Figure 3-2 illustrates the structure required to implement an AMBA AHB design with 
three masters and four slaves.

Figure 3-2 Multiplexor interconnection
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3.3 Overview of AMBA AHB operation

Before an AMBA AHB transfer can commence the bus master must be granted access 
to the bus. This process is started by the master asserting a request signal to the arbiter. 
Then the arbiter indicates when the master will be granted use of the bus.

A granted bus master starts an AMBA AHB transfer by driving the address and control 
signals. These signals provide information on the address, direction and width of the 
transfer, as well as an indication if the transfer forms part of a burst. Two different forms 
of burst transfers are allowed:

• incrementing bursts, which do not wrap at address boundaries

• wrapping bursts, which wrap at particular address boundaries. 

A write data bus is used to move data from the master to a slave, while a read data bus 
is used to move data from a slave to the master.

Every transfer consists of:

• an address and control cycle

• one or more cycles for the data. 

The address cannot be extended and therefore all slaves must sample the address during 
this time. The data, however, can be extended using the HREADY signal. When LOW 
this signal causes wait states to be inserted into the transfer and allows extra time for the 
slave to provide or sample data.

During a transfer the slave shows the status using the response signals, HRESP[1:0]:

OKAY The OKAY response is used to indicate that the transfer is 
progressing normally and when HREADY goes HIGH this shows 
the transfer has completed successfully.

ERROR The ERROR response indicates that a transfer error has occurred 
and the transfer has been unsuccessful. 

RETRY and SPLIT Both the RETRY and SPLIT transfer responses indicate that the 
transfer cannot complete immediately, but the bus master should 
continue to attempt the transfer.

In normal operation a master is allowed to complete all the transfers in a particular burst 
before the arbiter grants another master access to the bus. However, in order to avoid 
excessive arbitration latencies it is possible for the arbiter to break up a burst and in such 
cases the master must re-arbitrate for the bus in order to complete the remaining 
transfers in the burst.
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3.4 Basic transfer

An AHB transfer consists of two distinct sections:

• The address phase, which lasts only a single cycle.

• The data phase, which may require several cycles. This is achieved using the 
HREADY signal.

Figure 3-3 shows the simplest transfer, one with no wait states. 

Figure 3-3 Simple transfer
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• After the slave has sampled the address and control it can start to drive the 
appropriate response and this is sampled by the bus master on the third rising 
edge of the clock.

This simple example demonstrates how the address and data phases of the transfer occur 
during different clock periods. In fact, the address phase of any transfer occurs during 
the data phase of the previous transfer. This overlapping of address and data is 
fundamental to the pipelined nature of the bus and allows for high performance 
operation, while still providing adequate time for a slave to provide the response to a 
transfer.

A slave may insert wait states into any transfer, as shown in Figure 3-4, which extends 
the transfer allowing additional time for completion. 

Figure 3-4 Transfer with wait states
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When a transfer is extended in this way it will have the side-effect of extending the 
address phase of the following transfer. This is illustrated in Figure 3-5 which shows 
three transfers to unrelated addresses, A, B & C. 

Figure 3-5 Multiple transfers

In Figure 3-5:

• the transfers to addresses A and C are both zero wait state

• the transfer to address B is one wait state 

• extending the data phase of the transfer to address B has the effect of extending 
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3.5 Transfer type

Every transfer can be classified into one of four different types, as indicated by the 
HTRANS[1:0] signals as shown in Table 3-1.

Table 3-1 Transfer type encoding

HTRANS[1:0] Type Description

00 IDLE Indicates that no data transfer is required. The IDLE transfer type is used when a bus 
master is granted the bus, but does not wish to perform a data transfer. 
Slaves must always provide a zero wait state OKAY response to IDLE transfers and the 
transfer should be ignored by the slave.

01 BUSY The BUSY transfer type allows bus masters to insert IDLE cycles in the middle of bursts 
of transfers. This transfer type indicates that the bus master is continuing with a burst of 
transfers, but the next transfer cannot take place immediately. When a master uses the 
BUSY transfer type the address and control signals must reflect the next transfer in the 
burst. 
The transfer should be ignored by the slave. Slaves must always provide a zero wait state 
OKAY response, in the same way that they respond to IDLE transfers.

10 NONSEQ Indicates the first transfer of a burst or a single transfer. The address and control signals 
are unrelated to the previous transfer. 
Single transfers on the bus are treated as bursts of one and therefore the transfer type is 
NONSEQUENTIAL.

11 SEQ The remaining transfers in a burst are SEQUENTIAL and the address is related to the 
previous transfer. The control information is identical to the previous transfer. The 
address is equal to the address of the previous transfer plus the size (in bytes). In the 
case of a wrapping burst the address of the transfer wraps at the address boundary equal 
to the size (in bytes) multiplied by the number of beats in the transfer (either 4, 8 or 16).
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Figure 3-6 shows a number of different transfer types being used. 

Figure 3-6 Transfer type examples

In Figure 3-6:

• The first transfer is the start of a burst and therefore is NONSEQUENTIAL. 

• The master is unable to perform the second transfer of the burst immediately and 
therefore the master uses a BUSY transfer to delay the start of the next transfer. 
In this example the master only requires one cycle before it is ready to start the 
next transfer in the burst, which completes with no wait states.

• The master performs the third transfer of the burst immediately, but this time the 
slave is unable to complete and uses HREADY to insert a single wait state. 

• The final transfer of the burst completes with zero wait states.
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3.6 Burst operation

Four, eight and sixteen-beat bursts are defined in the AMBA AHB protocol, as well as 
undefined-length bursts and single transfers. Both incrementing and wrapping bursts 
are supported in the protocol:

• Incrementing bursts access sequential locations and the address of each transfer 
in the burst is just an increment of the previous address. 

• For wrapping bursts, if the start address of the transfer is not aligned to the total 
number of bytes in the burst (size x beats) then the address of the transfers in the 
burst will wrap when the boundary is reached. For example, a four-beat 
wrapping burst of word (4-byte) accesses will wrap at 16-byte boundaries. 
Therefore, if the start address of the transfer is 0x34, then it consists of four 
transfers to addresses 0x34, 0x38, 0x3C and 0x30.

Burst information is provided using HBURST[2:0] and the eight possible types are 
defined in Table 3-2.

Bursts must not cross a 1kB address boundary. Therefore it is important that masters do 
not attempt to start a fixed-length incrementing burst which would cause this boundary 
to be crossed.

It is acceptable to perform single transfers using an unspecified-length incrementing 
burst which only has a burst of length one.

Table 3-2 Burst signal encoding

HBURST[2:0] Type Description

000 SINGLE Single transfer

001 INCR Incrementing burst of unspecified length

010 WRAP4 4-beat wrapping burst

011 INCR4 4-beat incrementing burst

100 WRAP8 8-beat wrapping burst

101 INCR8 8-beat incrementing burst

110 WRAP16 16-beat wrapping burst

111 INCR16 16-beat incrementing burst
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An incrementing burst can be of any length, but the upper limit is set by the fact that the 
address must not cross a 1kB boundary

Note

The burst size indicates the number of beats in the burst, not the number of bytes 
transferred. The total amount of data transferred in a burst is calculated by multiplying 
the number of beats by the amount of data in each beat, as indicated by HSIZE[2:0].

All transfers within a burst must be aligned to the address boundary equal to the size of 
the transfer. For example, word transfers must be aligned to word address boundaries 
(that is A[1:0] = 00), halfword transfers must be aligned to halfword address boundaries 
(that is A[0] = 0).

3.6.1 Early burst termination

There are certain circumstances when a burst will not be allowed to complete and 
therefore it is important that any slave design which makes use of the burst information 
can take the correct course of action if the burst is terminated early. The slave can 
determine when a burst has terminated early by monitoring the HTRANS signals and 
ensuring that after the start of the burst every transfer is labelled as SEQUENTIAL or 
BUSY. If a NONSEQUENTIAL or IDLE transfer occurs then this indicates that a new 
burst has started and therefore the previous one must have been terminated.

If a bus master cannot complete a burst because it loses ownership of the bus then it 
must rebuild the burst appropriately when it next gains access to the bus. For example, 
if a master has only completed one beat of a four-beat burst then it must use an 
undefined-length burst to perform the remaining three transfers.

Examples are shown on the following pages:

• Figure 3-7 shows a Four-beat wrapping burst on page 3-13

• Figure 3-8 shows a Four-beat incrementing burst on page 3-14

• Figure 3-9 shows an Eight-beat wrapping burst on page 3-15

• Figure 3-10 shows an Eight-beat incrementing burst on page 3-15

• Figure 3-11 shows Undefined-length bursts on page 3-16.
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The example in Figure 3-7 shows a four-beat wrapping burst with a wait state added for 
the first transfer. 

Figure 3-7 Four-beat wrapping burst

As the burst is a four-beat burst of word transfers the address will wrap at 16-byte 
boundaries, hence the transfer to address 0x3C is followed by a transfer to address 0x30. 
The only difference with the incrementing burst, shown in Figure 3-8 on page 3-14, is 
that the addresses continue past the 16-byte boundary.
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Figure 3-8 Four-beat incrementing burst
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The example in Figure 3-9 is an eight-beat burst of word transfers. 

Figure 3-9 Eight-beat wrapping burst

The address will wrap at 32-byte boundaries and therefore address 0x3C is followed by 
0x20. 

The burst in Figure 3-10 uses halfword transfers, so the addresses increase by 2 and the 
burst is incrementing so the addresses continue to increment past the 16-byte boundary.

Figure 3-10 Eight-beat incrementing burst
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The final example in Figure 3-11 shows incrementing bursts of undefined length. 

Figure 3-11 Undefined-length bursts

Figure 3-11 shows two bursts:

• Two halfword transfers starting at address 0x20. The halfword transfer addresses 
increment by 2. 

• Three word transfers starting at address 0x5C. The word transfer addresses 
increment by 4.
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3.7 Control signals

As well as the transfer type and burst type each transfer will have a number of control 
signals that provide additional information about the transfer. These control signals 
have exactly the same timing as the address bus. However, they must remain constant 
throughout a burst of transfers.

3.7.1 Transfer direction

When HWRITE is HIGH, this signal indicates a write transfer and the master will 
broadcast data on the write data bus, HWDATA[31:0]. When LOW a read transfer will 
be performed and the slave must generate the data on the read data bus 
HRDATA[31:0].

3.7.2 Transfer size

HSIZE[2:0] indicates the size of the transfer, as shown in Table 3-3.

The size is used in conjunction with the HBURST[2:0] signals to determine the address 
boundary for wrapping bursts.

3.7.3 Protection control

The protection control signals, HPROT[3:0], provide additional information about a 
bus access and are primarily intended for use by any module that wishes to implement 
some level of protection (see Table 3-4).

Table 3-3 Size encoding

HSIZE[2] HSIZE[1] HSIZE[0] Size Description

0 0 0 8 bits Byte

0 0 1 16 bits Halfword

0 1 0 32 bits Word

0 1 1 64 bits -

1 0 0 128 bits 4-word line

1 0 1 256 bits 8-word line

1 1 0 512 bits -

1 1 1 1024 bits -
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The signals indicate if the transfer is:

• an opcode fetch or data access

• a privileged mode access or user mode access. 

For bus masters with a memory management unit these signals also indicate whether 
the current access is cacheable or bufferable.

Not all bus masters will be capable of generating accurate protection information, 
therefore it is recommended that slaves do not use the HPROT signals unless strictly 
necessary.

Table 3-4 Protection signal encodings

HPROT[3]
cacheable

HPROT[2]
bufferable

HPROT[1]
privileged

HPROT[0]
data/opcode

Description

- - - 0 Opcode fetch

- - - 1 Data access

- - 0 - User access

- - 1 - Privileged access

- 0 - - Not bufferable

- 1 - - Bufferable

0 - - - Not cacheable

1 - - - Cacheable
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3.8 Address decoding

A central address decoder is used to provide a select signal, HSELx, for each slave on 
the bus. The select signal is a combinatorial decode of the high-order address signals, 
and simple address decoding schemes are encouraged to avoid complex decode logic 
and to ensure high-speed operation.

A slave must only sample the address and control signals and HSELx when HREADY 
is HIGH, indicating that the current transfer is completing. Under certain circumstances 
it is possible that HSELx will be asserted when HREADY is LOW, but the selected 
slave will have changed by the time the current transfer completes.

The minimum address space that can be allocated to a single slave is 1kB. All bus 
masters are designed such that they will not perform incrementing transfers over a 1kB 
boundary, thus ensuring that a burst never crosses an address decode boundary.

In the case where a system design does not contain a completely filled memory map an 
additional default slave should be implemented to provide a response when any of the 
nonexistent address locations are accessed. If a NONSEQUENTIAL or SEQUENTIAL 
transfer is attempted to a nonexistent address location then the default slave should 
provide an ERROR response. IDLE or BUSY transfers to nonexistent locations should 
result in a zero wait state OKAY response. Typically the default slave functionality will 
be implemented as part of the central address decoder.

Figure 3-12 shows a typical address decoding system and the slave select signals.

Figure 3-12 Slave select signals
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3.9 Slave transfer responses

After a master has started a transfer, the slave then determines how the transfer should 
progress. No provision is made within the AHB specification for a bus master to cancel 
a transfer once it has commenced.

Whenever a slave is accessed it must provide a response which indicates the status of 
the transfer. The HREADY signal is used to extend the transfer and this works in 
combination with the response signals, HRESP[1:0], which provide the status of the 
transfer.

The slave can complete the transfer in a number of ways. It can:

• complete the transfer immediately

• insert one or more wait states to allow time to complete the transfer

• signal an error to indicate that the transfer has failed

• delay the completion of the transfer, but allow the master and slave to back off 
the bus, leaving it available for other transfers.

3.9.1 Transfer done

The HREADY signal is used to extend the data portion of an AHB transfer. When 
LOW the HREADY signal indicates the transfer is to be extended and when HIGH 
indicates that the transfer can complete.

Note

Every slave must have a predetermined maximum number of wait states that it will 
insert before it backs off the bus, in order to allow the calculation of the latency of 
accessing the bus. It is recommended, but not mandatory, that slaves do not insert more 
than 16 wait states to prevent any single access locking the bus for a large number of 
clock cycles.

3.9.2 Transfer response

A typical slave will use the HREADY signal to insert the appropriate number of wait 
states into the transfer and then the transfer will complete with HREADY HIGH and 
an OKAY response, which indicates the successful completion of the transfer.

The ERROR response is used by a slave to indicate some form of error condition with 
the associated transfer. Typically this is used for a protection error, such as an attempt 
to write to a read-only memory location.
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The SPLIT and RETRY response combinations allow slaves to delay the completion of 
a transfer, but free up the bus for use by other masters. These response combinations are 
usually only required by slaves that have a high access latency and can make use of 
these response codes to ensure that other masters are not prevented from accessing the 
bus for long periods of time.

A full description of the SPLIT and RETRY operations can be found in Split and retry 
on page 3-24.

The encoding of HRESP[1:0], the transfer response signals, and a description of each 
response are shown in Table 3-5.

When it is necessary for a slave to insert a number of wait states prior to deciding what 
response will be given then it must drive the response to OKAY.

Table 3-5 Response encoding

HRESP[1] HRESP[0] Response Description

0 0 OKAY When HREADY is HIGH this shows the 
transfer has completed successfully.
The OKAY response is also used for any 
additional cycles that are inserted, with 
HREADY LOW, prior to giving one of the 
three other responses.

0 1 ERROR This response shows an error has occurred. 
The error condition should be signalled to 
the bus master so that it is aware the transfer 
has been unsuccessful.
A two-cycle response is required for an error 
condition.

1 0 RETRY The RETRY response shows the transfer has 
not yet completed, so the bus master should 
retry the transfer. The master should 
continue to retry the transfer until it 
completes. 
A two-cycle RETRY response is required.

1 1 SPLIT The transfer has not yet completed 
successfully. The bus master must retry the 
transfer when it is next granted access to the 
bus. The slave will request access to the bus 
on behalf of the master when the transfer can 
complete. 
A two-cycle SPLIT response is required.
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3.9.3 Two-cycle response

Only an OKAY response can be given in a single cycle. The ERROR, SPLIT and 
RETRY responses require at least two cycles. To complete with any of these responses 
then in the penultimate (one before last) cycle the slave drives HRESP[1:0] to indicate 
ERROR, RETRY or SPLIT while driving HREADY LOW to extend the transfer for an 
extra cycle. In the final cycle HREADY is driven HIGH to end the transfer, while 
HRESP[1:0] remains driven to indicate ERROR, RETRY or SPLIT.

If the slave needs more than two cycles to provide the ERROR, SPLIT or RETRY 
response then additional wait states may be inserted at the start of the transfer. During 
this time the HREADY signal will be LOW and the response must be set to OKAY.

The two-cycle response is required because of the pipelined nature of the bus. By the 
time a slave starts to issue either an ERROR, SPLIT or RETRY response then the 
address for the following transfer has already been broadcast onto the bus. The two-
cycle response allows sufficient time for the master to cancel this address and drive 
HTRANS[1:0] to IDLE before the start of the next transfer.

For the SPLIT and RETRY response the following transfer must be cancelled because 
it must not take place before the current transfer has completed. However, for the 
ERROR response, where the current transfer is not repeated, completion of the 
following transfer is optional.

Figure 3-13 shows an example of a RETRY operation. 

Figure 3-13 Transfer with retry response
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The following events are illustrated:

• The master starts with a transfer to address A.

• Before the response is received for this transfer the master moves the address on 
to A + 4. 

• The slave at address A is unable to complete the transfer immediately and 
therefore it issues a RETRY response. This response indicates to the master that 
the transfer at address A is unable to complete and so the transfer at address A + 
4 is cancelled and replaced by an IDLE transfer.

Figure 3-14 shows a transfer where the slave requires one cycle to decide on the 
response it is going to give (during which time HRESP indicates OKAY) and then the 
slave ends the transfer with a two-cycle ERROR response.

Figure 3-14 Error response
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3.9.5 Split and retry

The SPLIT and RETRY responses provide a mechanism for slaves to release the bus 
when they are unable to supply data for a transfer immediately. Both mechanisms allow 
the transfer to finish on the bus and therefore allow a higher-priority master to get access 
to the bus.

The difference between SPLIT and RETRY is the way the arbiter allocates the bus after 
a SPLIT or a RETRY has occurred:

• For RETRY the arbiter will continue to use the normal priority scheme and 
therefore only masters having a higher priority will gain access to the bus. 

• For a SPLIT transfer the arbiter will adjust the priority scheme so that any other 
master requesting the bus will get access, even if it is a lower priority. In order 
for a SPLIT transfer to complete the arbiter must be informed when the slave has 
the data available.

The SPLIT transfer requires extra complexity in both the slave and the arbiter, but has 
the advantage that it completely frees the bus for use by other masters, whereas the 
RETRY case will only allow higher priority masters onto the bus.

A bus master should treat SPLIT and RETRY in the same manner. It should continue 
to request the bus and attempt the transfer until it has either completed successfully or 
been terminated with an ERROR response.
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3.10 Data buses

In order to allow implementation of an AHB system without the use of tristate drivers 
separate read and write data buses are required. The minimum data bus width is 
specified as 32 bits, but the bus width can be increased as described in About the AHB 
data bus width on page 3-41.

3.10.1 HWDATA[31:0]

The write data bus is driven by the bus master during write transfers. If the transfer is 
extended then the bus master must hold the data valid until the transfer completes, as 
indicated by HREADY HIGH.

All transfers must be aligned to the address boundary equal to the size of the transfer. 
For example, word transfers must be aligned to word address boundaries (that is 
A[1:0] = 00), halfword transfers must be aligned to halfword address boundaries 
(that is A[0] = 0).

For transfers that are narrower than the width of the bus, for example a 16-bit transfer 
on a 32-bit bus, then the bus master only has to drive the appropriate byte lanes. The 
slave is responsible for selecting the write data from the correct byte lanes. Table 3-6 
on page 3-26 and Table 3-7 on page 3-26 show which byte lanes are active for a little-
endian and big-endian system respectively. If required, this information can be 
extended for wider data bus implementations. Burst transfers which have a transfer size 
less than the width of the data bus will have different active byte lanes for each beat of 
the burst.

The active byte lane is dependent on the endianness of the system, but AHB does not 
specify the required endianness. Therefore, it is important that all masters and slaves on 
the bus are of the same endianness.

3.10.2 HRDATA[31:0]

The read data bus is driven by the appropriate slave during read transfers. If the slave 
extends the read transfer by holding HREADY LOW then the slave only needs to 
provide valid data at the end of the final cycle of the transfer, as indicated by HREADY 
HIGH.

For transfers that are narrower than the width of the bus the slave only needs to provide 
valid data on the active byte lanes, as indicated in Table 3-6 and Table 3-7. The bus 
master is responsible for selecting the data from the correct byte lanes.
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A slave only has to provide valid data when a transfer completes with an OKAY 
response. SPLIT, RETRY and ERROR responses do not require valid read data.

3.10.3 Endianness

In order for the system to function correctly it is essential that all modules are of the 
same endianness and also that any data routing or bridges are of the same endianness.

Table 3-6 Active byte lanes for a 32-bit little-endian data bus

Transfer
size

Address
offset

DATA
[31:24]

DATA
[23:16]

DATA
[15:8]

DATA
[7:0]

Word 0 ä ä ä ä

Halfword 0 - - ä ä

Halfword 2 ä ä - -

Byte 0 - - - ä

Byte 1 - - ä -

Byte 2 - ä - -

Byte 3 ä - - -

Table 3-7 Active byte lanes for a 32-bit big-endian data bus

Transfer
size

Address
offset

DATA
[31:24]

DATA
[23:16]

DATA
[15:8]

DATA
[7:0]

Word 0 ä ä ä ä

Halfword 0 ä ä - -

Halfword 2 - - ä ä

Byte 0 ä - - -

Byte 1 - ä - -

Byte 2 - - ä -

Byte 3 - - - ä
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Dynamic endianness is not supported, because in the majority of embedded systems, 
this would lead to a significant silicon overhead that is redundant.

For module designers it is recommended that only modules which will be used in a wide 
variety of applications should be made bi-endian, with either a configuration pin or 
internal control bit to select the endianness. For more application-specific blocks, fixing 
the endianness to either little-endian or big-endian will result in a smaller, lower power, 
higher performance interface.
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3.11 Arbitration

The arbitration mechanism is used to ensure that only one master has access to the bus 
at any one time. The arbiter performs this function by observing a number of different 
requests to use the bus and deciding which is currently the highest priority master 
requesting the bus. The arbiter also receives requests from slaves that wish to complete 
SPLIT transfers.

Any slaves which are not capable of performing SPLIT transfers do not need to be 
aware of the arbitration process, except that they need to observe the fact that a burst of 
transfers may not complete if the ownership of the bus is changed.

3.11.1 Signal description

A brief description of each of the arbitration signals is given below: 

HBUSREQx The bus request signal is used by a bus master to request access to 
the bus. Each bus master has its own HBUSREQx signal to the 
arbiter and there can be up to 16 separate bus masters in any 
system.

HLOCKx The lock signal is asserted by a master at the same time as the bus 
request signal. This indicates to the arbiter that the master is 
performing a number of indivisible transfers and the arbiter must 
not grant any other bus master access to the bus once the first 
transfer of the locked transfers has commenced. HLOCKx must 
be asserted at least a cycle before the address to which it refers, in 
order to prevent the arbiter from changing the grant signals.

HGRANTx The grant signal is generated by the arbiter and indicates that the 
appropriate master is currently the highest priority master 
requesting the bus, taking into account locked transfers and 
SPLIT transfers.

A master gains ownership of the address bus when HGRANTx is 
HIGH and HREADY is HIGH at the rising edge of HCLK.

HMASTER[3:0] The arbiter indicates which master is currently granted the bus 
using the HMASTER[3:0] signals and this can be used to control 
the central address and control multiplexor. The master number is 
also required by SPLIT-capable slaves so that they can indicate to 
the arbiter which master is able to complete a SPLIT transaction.

HMASTLOCK The arbiter indicates that the current transfer is part of a locked 
sequence by asserting the HMASTLOCK signal, which has the 
same timing as the address and control signals.
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HSPLIT[15:0] The 16-bit Split Complete bus is used by a SPLIT-capable slave to 
indicate which bus master can complete a SPLIT transaction. This 
information is needed by the arbiter so that it can grant the master 
access to the bus to complete the transfer.

Further information is provided in:

• Requesting bus access

• Granting bus access on page 3-30

• Early burst termination on page 3-33

• Locked transfers on page 3-34.

3.11.2 Requesting bus access

A bus master uses the HBUSREQx signal to request access to the bus and may request 
the bus during any cycle. The arbiter will sample the request on the rising of the clock 
and then use an internal priority algorithm to decide which master will be the next to 
gain access to the bus.

Normally the arbiter will only grant a different bus master when a burst is completing. 
However, if required, the arbiter can terminate a burst early to allow a higher priority 
master access to the bus.

If the master requires locked accesses then it must also assert the HLOCKx signal to 
indicate to the arbiter that no other masters should be granted the bus.

When a master is granted the bus and is performing a fixed length burst it is not 
necessary to continue to request the bus in order to complete the burst. The arbiter 
observes the progress of the burst and uses the HBURST[2:0] signals to determine how 
many transfers are required by the master. If the master wishes to perform a second 
burst after the one that is currently in progress then it should re-assert the request signal 
during the burst.

If a master loses access to the bus in the middle of a burst then it must re-assert the 
HBUSREQx request line to regain access to the bus.

For undefined length bursts the master should continue to assert the request until it has 
started the last transfer. The arbiter cannot predict when to change the arbitration at the 
end of an undefined length burst.

It is possible that a master can be granted the bus when it is not requesting it. This may 
occur when no masters are requesting the bus and the arbiter grants access to a default 
master. Therefore, it is important that if a master does not require access to the bus it 
drives the transfer type HTRANS to indicate an IDLE transfer.
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3.11.3 Granting bus access

The arbiter indicates which bus master is currently the highest priority requesting the 
bus by asserting the appropriate HGRANTx signal. When the current transfer 
completes, as indicated by HREADY HIGH, then the master will become granted and 
the arbiter will change the HMASTER[3:0] signals to indicate the bus master number.

Figure 3-15 shows the process when all transfers are zero wait state and the HREADY 
signal is HIGH. 

Figure 3-15 Granting access with no wait states

Figure 3-16 shows the effect of wait states on the bus handover.

Figure 3-16 Granting access with wait states
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The ownership of the data bus is delayed from the ownership of the address bus. 
Whenever a transfer completes, as indicated by HREADY HIGH, then the master that 
owns the address bus will be able to use the data bus and will continue to own the data 
bus until the transfer completes. Figure 3-17 shows how the ownership of the data bus 
is transferred when handover occurs between two bus masters.

Figure 3-17 Data bus ownership
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Figure 3-18 shows an example of how the arbiter can hand over the bus at the end of a 
burst of transfers. 

Figure 3-18 Handover after burst
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Figure 3-19 shows how HGRANTx and HMASTER signals are used in a system. 

Figure 3-19 Bus master grant signals
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For example, if a master is only able to complete 3 transfers of an 8-beat burst, then 
when it regains the bus it must use a legal burst encoding to complete the remaining 5 
transfers. Any legal combination can be used, so either a 5-beat undefined length burst 
or a 4-beat fixed length burst followed by a single-beat undefined length burst would be 
acceptable.

3.11.5 Locked transfers

The arbiter must observe the HLOCKx signal from each master to determine when the 
master wishes to perform a locked sequence of transfers. The arbiter is then responsible 
for ensuring that no other bus masters are granted the bus until the locked sequence has 
completed.

After a sequence of locked transfers the arbiter will always keep the bus master granted 
for an additional transfer to ensure that the last transfer in the locked sequence has 
completed successfully and has not received either a SPLIT or RETRY response. 
Therefore it is recommended, but not mandatory, that the master inserts an IDLE 
transfer after any locked sequence to provide an opportunity for the arbitration to 
change before commencing another burst of transfers.

The arbiter is also responsible for asserting the HMASTLOCK signal, which has the 
same timing as the address and control signals. This signal indicates to any slave that 
the current transfer is locked and therefore must be processed before any other masters 
are granted the bus.

3.11.6 Default bus master

Every system must include a default bus master which is granted the bus if all other 
masters are unable to use the bus. When granted, the default bus master must only 
perform IDLE transfers.

If no masters are requesting the bus then the arbiter may either grant the default master 
or alternatively it may grant the master that would benefit the most from having low 
access latency to the bus.

Granting the default master access to the bus also provides a useful mechanism for 
ensuring that no new transfers are started on the bus and is a useful step to perform prior 
to entering a low-power mode of operation.

The default master must be granted if all other masters are waiting for SPLIT transfers 
to complete.
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3.12 Split transfers

SPLIT transfers improve the overall utilization of the bus by separating (or splitting) the 
operation of the master providing the address to a slave from the operation of the slave 
responding with the appropriate data.

When a transfer occurs the slave can decide to issue a SPLIT response if it believes the 
transfer will take a large number of cycles to perform. This signals to the arbiter that the 
master which is attempting the transfer should not be granted access to the bus until the 
slave indicates it is ready to complete the transfer. Therefore the arbiter is responsible 
for observing the response signals and internally masking any requests from masters 
which have been SPLIT.

During the address phase of a transfer the arbiter generates a tag, or bus master number, 
on HMASTER[3:0] which identifies the master that is performing the transfer. Any 
slave issuing a SPLIT response must be capable of indicating that it can complete the 
transfer, and it does this by making a note of the master number on the 
HMASTER[3:0] signals. 

Later, when the slave can complete the transfer, it asserts the appropriate bit, according 
to the master number, on the HSPLITx[15:0] signals from the slave to the arbiter. The 
arbiter then uses this information to unmask the request signal from the master and in 
due course the master will be granted access to the bus to retry the transfer. The arbiter 
samples the HSPLITx bus every cycle and therefore the slave only needs to assert the 
appropriate bit for a single cycle in order for the arbiter to recognize it.

In a system with multiple SPLIT-capable slaves the HSPLITx buses from each slave 
can be ORed together to provide a single resultant HSPLIT bus to the arbiter.

In the majority of systems the maximum capacity of 16 bus masters will not be used and 
therefore the arbiter only requires an HSPLIT bus which has the same number of bits 
as there are bus masters. However, it is recommended that all SPLIT-capable slaves are 
designed to support up to 16 masters.
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3.12.1 Split transfer sequence

The basic stages of a SPLIT transaction are:

1. The master starts the transfer in an identical way to any other transfer and issues 
address and control information

2. If the slave is able to provide data immediately it may do so. If the slave decides 
that it may take a number of cycles to obtain the data it gives a SPLIT transfer 
response.

During every transfer the arbiter broadcasts a number, or tag, showing which 
master is using the bus. The slave must record this number, to use it to restart the 
transfer at a later time.

3. The arbiter grants other masters use of the bus and the action of the SPLIT 
response allows bus master handover to occur. If all other masters have also 
received a SPLIT response then the default master is granted.

4. When the slave is ready to complete the transfer it asserts the appropriate bit of 
the HSPLITx bus to the arbiter to indicate which master should be regranted 
access to the bus.

5. The arbiter observes the HSPLITx signals on every cycle, and when any bit of 
HSPLITx is asserted the arbiter restores the priority of the appropriate master.

6. Eventually the arbiter will grant the master so it can re-attempt the transfer. This 
may not occur immediately if a higher priority master is using the bus.

7. When the transfer eventually takes place the slave finishes with an OKAY 
transfer response.

3.12.2 Multiple split transfers

The bus protocol only allows a single outstanding transaction per bus master. If any 
master module is able to deal with more than one outstanding transaction it requires an 
additional set of request and grant signals for each outstanding transaction that it can 
handle. At the protocol level a single module may appear as a number of different bus 
masters, each of which can only have one outstanding transaction.

It is, however, possible that a SPLIT-capable slave could receive more transfer requests 
than it is able to process concurrently. If this happens then it is acceptable for the slave 
to issue a SPLIT response without recording the appropriate address and control 
information for the transfer and it is only necessary for the slave to record the bus master 
number. The slave can then indicate that it can process another transfer by asserting the 
appropriate bits on the HSPLITx bus for all masters that the slave has previously 
SPLIT, but that the slave has not recorded the address and control information.
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The arbiter is then able to regrant the masters access to the bus and they will retry the 
transfer, giving the address and control information required by the slave. This means 
that a master may be granted the bus a number of times before it is finally allowed to 
complete the transfer it requires.

3.12.3 Preventing deadlock

Both the SPLIT and RETRY transfer responses must be used with care to prevent bus 
deadlock. A single transfer can never lock the AHB as every slave must be designed to 
finish a transfer within a predetermined number of cycles. However, it is possible for 
deadlock to occur if a number of different masters attempt to access a slave which issues 
SPLIT or RETRY responses in a manner which the slave is unable to deal with.

Split transfers

For slaves that can issue a SPLIT transfer response, bus deadlock is prevented by 
ensuring that the slave can withstand a request from every master in the system, up to a 
maximum of 16. The slave does not need to store the address and control information 
for every transfer, it simply needs to record the fact that a transfer request has been made 
and a SPLIT response issued. Eventually all masters will be at a low priority and the 
slave can then work through the requests in an orderly manner, indicating to the arbiter 
which request it is servicing, thus ensuring that all requests are eventually serviced.

When a slave has a number of outstanding requests it may choose to process them in 
any order, although the slave must be aware that a locked transfer will have to be 
completed before any other transfers can continue.

It is perfectly legal for the slave to use a SPLIT response without latching the address 
and control information. The slave only needs to record that a transfer attempt has been 
made by that particular master and then at a later point the slave can obtain the address 
and control information by indicating that it is ready to complete the transfer. The 
master will be granted the bus and will rebroadcast the transfer, allowing the slave to 
latch the address and control information and either respond with the data immediately, 
or issue another SPLIT response if a number of additional cycles are required.

Ideally the slave should never have more outstanding transfers than it can support, but 
the mechanism to support this is required to prevent bus deadlock.
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Retry transfers

A slave which issues RETRY responses must only be accessed by one master at a time. 
This is not enforced by the protocol of the bus and should be ensured by the system 
architecture. In most cases slaves that issue RETRY responses will be peripherals 
which need to be accessed by just one master at a time, so this will be ensured by some 
higher level protocol.

Hardware protection against multiple masters accessing RETRY slaves is not a 
requirement of the protocol, but may be implemented as described in the following 
paragraph. The only bus-level requirement is that the slave must drive HREADY 
HIGH within a predetermined number of clock cycles.

If hardware protection is required then this may be implemented within the RETRY 
slave itself. When a slave issues a RETRY it can sample the master number. Between 
that point and the time when the transfer is finally completed the RETRY slave can 
check every transfer attempt that is made to ensure the master number is the same. If it 
ever detects that the master number is different then it can take an alternative course of 
action, such as:

• an ERROR response

• a signal to the arbiter

• a system level interrupt

• a complete system reset. 
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3.12.4 Bus handover with split transfers

The protocol requires that a master performs an IDLE transfer immediately after 
receiving a SPLIT or RETRY response allowing the bus to be transferred to another 
master.  Figure 3-20 shows the sequence of events that occur for a split transfer.

Figure 3-20 Handover after split transfer
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3.13 Reset

The reset, HRESETn, is the only active LOW signal in the AMBA AHB specification 
and is the primary reset for all bus elements. The reset may be asserted asynchronously, 
but is deasserted synchronously after the rising edge of HCLK.

During reset all masters must ensure the address and control signals are at valid levels 
and that HTRANS[1:0] indicates IDLE.
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3.14 About the AHB data bus width

One way to improve bus bandwidth without increasing the frequency of operation is to 
make the data path of the on-chip bus wider. Both the increased layers of metal and the 
use of large on-chip memory blocks (such as Embedded DRAM) are driving factors 
which encourage the use of wider on-chip buses.

Specifying a fixed width of bus will mean that in many cases the width of the bus is not 
optimal for the application. Therefore an approach has been adopted which allows 
flexibility of the width of bus, but still ensures that modules are highly portable between 
designs.

The protocol allows for the AHB data bus to be 8, 16, 32, 64, 128, 256, 512 or 
1024-bits wide. However, it is recommended that a minimum bus width of 32 bits is 
used and it is expected that a maximum of 256 bits will be adequate for almost all 
applications.

For both read and write transfers the receiving module must select the data from the 
correct byte lane on the bus. Replication of data across all byte lanes is not required.
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3.15 Implementing a narrow slave on a wider bus

Figure 3-21 shows how a slave module, which has been originally designed to operate 
with a 32-bit data bus, can be easily converted to operate on a wider 64-bit bus. This 
only requires the addition of external logic, rather than any internal design changes, and 
therefore the technique is applicable to hard macrocells.

Figure 3-21 Narrow slave on a wide bus
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3.16 Implementing a wide slave on a narrow bus

The example in Figure 3-22 shows a wide slave being implemented on a narrow bus. 
Again only external logic is required and hence predesigned or imported blocks can be 
easily modified to work with a different width of data bus.

Figure 3-22 Wide slave on a narrow bus
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3.17 About the AHB AMBA components

This section describes each of the elements in an AHB-based AMBA system and 
provides the generic timing parameters that are required to analyze an AMBA design.

The following notation is used for the timing parameters:

• Tis - input setup time

• Tih - input hold time

• Tov - output valid time

• Toh - output hold time.
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3.18 AHB bus slave

An AHB bus slave responds to transfers initiated by bus masters within the system. The 
slave uses a HSELx select signal from the decoder to determine when it should respond 
to a bus transfer. All other signals required for the transfer, such as the address and 
control information, will be generated by the bus master.

3.18.1 Interface diagram

Figure 3-23 shows an AHB bus slave interface.

Figure 3-23 AHB bus slave interface
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3.18.2 Timing diagrams

The following diagrams show the timing parameters related to an access to an AHB bus 
slave operating in an AMBA system:

• Figure 3-24 shows the AHB slave reset timing parameters

• Figure 3-25 shows the main AHB slave timing parameters

• Figure 3-26 shows the additional timing parameters for split-capable AHB 
slaves.

Figure 3-24 AHB slave reset timing

Figure 3-25 AHB timing parameters
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Figure 3-26 Additional split-capable slave parameters

3.18.3 Timing parameters

The timing parameters related to an AHB bus slave are given for input signals in 
Table 3-8 and for output signals in Table 3-9. 
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Table 3-8 AHB slave input parameters

Parameter Description

Tclk HCLK minimum clock period

Tisrst HRESETn deasserted setup time before HCLK

Tihrst HRESETn deasserted hold time after HCLK

Tissel HSELx setup time before HCLK

Tihsel HSELx hold time after HCLK

Tistr Transfer type setup time before HCLK

Tihtr Transfer type hold time after HCLK

Tisa HADDR[31:0] setup time before HCLK

Tiha HADDR[31:0] hold time after HCLK

Tisctl HWRITE, HSIZE[2:0] and HBURST[2:0] control signal setup time 
before HCLK
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Tihctl HWRITE, HSIZE[2:0] and HBURST[2:0] control signal hold time 
after HCLK

Tiswd Write data setup time before HCLK

Tihwd Write data hold time after HCLK

Tisrdy Ready setup time before HCLK

Tihrdy Ready hold time after HCLK

Tismst Master number setup time before HCLK (SPLIT-capable only)

Tihmst Master number hold time after HCLK (SPLIT-capable only)

Tismlck Master locked setup time before HCLK (SPLIT-capable only)

Tihmlck Master locked hold time after HCLK (SPLIT-capable only)

Table 3-9 AHB slave output parameters

Parameter Description

Tovrsp Response valid time after HCLK

Tohrsp Response hold time after HCLK

Tovrdy Ready valid time after HCLK

Tohrdy Ready hold time after HCLK

Tovsplt Split valid time after HCLK (SPLIT-capable only)

Tohsplt Split hold time after HCLK (SPLIT-capable only)

Table 3-8 AHB slave input parameters (continued)

Parameter Description
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3.19 AHB bus master

An AHB bus master has the most complex bus interface in an AMBA system. Typically 
an AMBA system designer would use predesigned bus masters and therefore would not 
need to be concerned with the detail of the bus master interface.

3.19.1 Interface diagram

The interface diagram of an AHB bus master shows the main signal groups.

Figure 3-27 AHB bus master interface diagram

3.19.2 Bus master timing diagrams

The following diagrams show the timing parameters related to an AHB bus master 
operating in an AMBA system:

• Figure 3-28 shows the AHB master reset timing parameters

• Figure 3-29 shows the AHB master transfer timing parameters

• Figure 3-30 shows the AHB master arbitration timing parameters.

Figure 3-28 AHB master reset timing parameters
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Figure 3-29 AHB master transfer timing parameters

Figure 3-30 AHB master arbitration timing parameters

HCLK

Control

HWRITE

HSIZE[2:0]

HBURST[2:0]

HPROT[3:0]

HTRANS[1:0]

HWDATA[31:0]

HREADY

HRESP[1:0]

Data

(A)

NONSEQ

Data

(A)HRDATA[31:0]

OKAY OKAY

HADDR[31:0] A

Tihrdy

Tohwd

Tohctl

Toha

TohtrTovtr

Tova

Tovctl

Tovwd

Tisrsp

Tisrdy

Tihrsp

Tihrd
Tisrd

HCLK

HGRANTx

HBUSREQx

HLOCKx

Tohreq

Tohlck

Tisgnt
Tihgnt

Tovlck

Tovreq



AMBA AHB

ARM IHI 0011A © Copyright ARM Limited 1999. All rights reserved. 3-51

3.19.3 Timing parameters

The timing parameters related to an AHB bus master operating in an AMBA system are 
also shown in textual form in the following two tables. Table 3-10 details the input 
signals. Table 3-11 details output signals.

Table 3-10 Bus master input timing parameters

Parameter Description

Tclk HCLK minimum clock period time

Tisrst Reset deasserted setup time before HCLK

Tihrst Reset deasserted hold time after HCLK

Tisgnt HGRANTx setup time before HCLK

Tihgnt HGRANTx hold time after HCLK

Tisrdy Ready setup time before HCLK

Tihrdy Ready hold time after HCLK

Tisrsp Response setup time before HCLK

Tihrsp Response hold time after HCLK

Tisrd Read data setup time before HCLK

Tihrd Read data hold time after HCLK

Table 3-11 Bus master output timing parameters

Parameter Description

Tovtr Transfer type valid time after HCLK

Tohtr Transfer type hold time after HCLK

Tova Address valid time after HCLK

Toha Address hold time after HCLK

Tovctl Control signal valid time after HCLK
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Tohctl Control signal hold time after HCLK

Tovwd Write data valid time after HCLK

Tohwd Write data hold time after HCLK

Tovreq Request valid time after HCLK

Tohreq Request hold time after HCLK

Tovlck Lock valid time after HCLK

Tohlck Lock hold time after HCLK

Table 3-11 Bus master output timing parameters (continued)

Parameter Description
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3.20 AHB arbiter

The role of the arbiter in an AMBA system is to control which master has access to the 
bus. Every bus master has a REQUEST/GRANT interface to the arbiter and the arbiter 
uses a prioritization scheme to decide which bus master is currently the highest priority 
master requesting the bus.

Each master also generates an HLOCKx signal which is used to indicate that the master 
requires exclusive access to the bus.

The detail of the priority scheme is not specified and is defined for each application. It 
is acceptable for the arbiter to use other signals, either AMBA or non-AMBA, to 
influence the priority scheme that is in use. 

3.20.1 Interface diagram

Figure 3-31 shows the signal interface of an AHB arbiter.

Figure 3-31 AHB arbiter interface diagram
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3.20.2 Timing diagrams

The following diagrams show the timing parameters related to an AHB bus arbiter 
operating in an AMBA system:

• Figure 3-32 shows the AHB arbiter reset timing parameters

• Figure 3-33 shows the AHB arbiter transfer timing parameters

• Figure 3-34 shows the AHB arbiter split timing parameters.

Figure 3-32 AHB arbiter reset timing parameters

Figure 3-33 AHB arbiter transfer timing parameters
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Figure 3-34 AHB arbiter split timing parameters

3.20.3 Timing parameters

The timing parameters related to an AHB arbiter are given in the following tables:

• Table 3-12 is for input signals

• Table 3-13 is for output signals.
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Table 3-12 AHB arbiter input parameters

Parameter Description

Tclk HCLK minimum clock period

Tisrst Reset deasserted setup time before HCLK

Tihrst Reset deasserted hold time after HCLK

Tisrdy Ready setup time before HCLK

Tihrdy Ready hold time after HCLK

Tisrsp Response setup time before HCLK
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Tihrsp Response hold time after HCLK

Tisreq Request setup time before HCLK

Tihreq Request hold time after HCLK

Tislck Lock setup time before HCLK

Tihlck Lock hold time after HCLK

Tissplt Split setup time before HCLK

Tihsplt Split hold time after HCLK

Tistr Transfer type setup time before HCLK

Tihtr Transfer type hold time after HCLK

Tisctl Control signal setup time before HCLK

Tihctl Control signal hold time after HCLK

Table 3-13 AHB arbiter output parameters

Parameter Description

Tovgnt Grant valid time after HCLK

Tohgnt Grant hold time after HCLK

Tovmst Master number valid time after HCLK

Tohmst Master number hold time after HCLK

Tovmlck Master locked valid time after HCLK

Tohmlck Master locked hold time after HCLK

Table 3-12 AHB arbiter input parameters (continued)

Parameter Description
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3.21 AHB decoder

The decoder in an AMBA system is used to perform a centralized address decoding 
function, which improves the portability of peripherals, by making them independent of 
the system memory map.

3.21.1 Interface diagram

Figure 3-35 shows an AHB decoder.

Figure 3-35 AHB decoder interface diagram

3.21.2 Timing diagram

The timing parameters for an AHB decoder are shown in Figure 3-36. 

Figure 3-36 AHB decoder timing parameter

3.21.3 Timing parameter

The timing parameter related to an AHB decoder is given in Table 3-14.

Address
AHB

decoder
HADDR[31:0]

HSELx2 Select

HSELx1

HSELx3

HADDR A

HSELx

Tadsel

HCLK

Table 3-14 AHB decoder output parameter

Parameter Description

Tadsel Delay from Address to Select valid
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Chapter 4
AMBA ASB

This chapter introduces the Advanced Microcontroller Bus Architecture (AMBA) 
Advanced System Bus specification. It contains the following sections:

• About the AMBA ASB on page 4-2

• AMBA ASB description on page 4-4

• ASB transfers on page 4-6

• Address decode on page 4-14

• Transfer response on page 4-16

• Multi-master operation on page 4-19

• Reset operation on page 4-23

• Description of ASB signals on page 4-25

• About the ASB AMBA components on page 4-46

• ASB bus slave on page 4-47

• ASB bus master on page 4-52

• ASB decoder on page 4-63

• ASB arbiter on page 4-71.
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4.1 About the AMBA ASB

The Advanced System Bus (ASB) specification defines a high-performance bus that can 
be used in the design of high performance 16 and 32-bit embedded microcontrollers.

AMBA ASB supports the efficient connection of processors, on-chip memories and off-
chip external memory interfaces with low-power peripheral macrocell functions. The 
bus also provides the test infrastructure for modular macrocell test and diagnostic 
access.

4.1.1 A typical AMBA ASB-based microcontroller

An AMBA-based microcontroller typically consists of a high-performance system 
backbone bus, able to sustain the external memory bandwidth, on which the CPU and 
other Direct Memory Access (DMA) devices reside, plus a bridge to a narrower APB 
bus on which the lower bandwidth peripheral devices are located. Figure 4-1 shows 
both ASB and APB in a typical AMBA system.

Figure 4-1 A typical AMBA system
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4.1.2 AMBA ASB and APB

The APB appears as a local secondary bus that is encapsulated as a single ASB slave 
device. APB provides a low-power extension to the system bus which builds on ASB 
signals directly. 

The APB bridge appears as a slave module which handles the bus handshake and 
control signal retiming on behalf of the local peripheral bus. By defining the APB 
interface from the starting point of the system bus, the benefits of the system diagnostics 
and test methodology can be exploited. 
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4.2 AMBA ASB description

The ASB is a high-performance pipelined bus, which supports multiple bus masters.

The basic flow of the bus operation is:

1. The arbiter determines which master is granted access to the bus.

2. When granted, a master initiates transfers on the bus.

3. The decoder uses the high order address lines to select a bus slave.

4. The slave provides a transfer response back to the bus master and data is 
transferred between the master and slave.

There are three types of transfer that can occur on the ASB:

NONSEQUENTIAL

Used for single transfers or for the first transfer of a burst.

SEQUENTIAL 

Used for transfers in a burst. The address of a SEQUENTIAL 
transfer is always related to the previous transfer.

ADDRESS-ONLY 

Used when no data movement is required. The three main uses for 
ADDRESS-ONLY transfers are for IDLE cycles, for bus master 
HANDOVER cycles, and for speculative address decoding 
without committing to a data transfer.
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Figure 4-2 shows the use of NONSEQUENTIAL and SEQUENTIAL transfers to 
perform a burst transaction. 

Figure 4-2 ASB transfers

The burst starts with a NONSEQUENTIAL transfer to address A. The following 
SEQUENTIAL transfers are to successive addresses A+4, A+8 and A+12.
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4.3 ASB transfers

When a master has been granted the bus it can perform the following transfers:

• NONSEQUENTIAL data transfer

• SEQUENTIAL data transfer

• ADDRESS-ONLY transfer.

A transfer is defined as starting at the falling edge of BCLK after the previous transfer 
has completed, as indicated by BWAIT being LOW, and running until the falling edge 
of BCLK after a complete transfer response is received, again indicated by BWAIT 
being LOW.

The type of transfer that a bus master will perform can be determined by the value on 
the BTRAN signals at the start of the transfer. During the transfer the BTRAN signals 
will change to indicate the type of the following transfer.
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4.3.1 Nonsequential transfer

A NONSEQUENTIAL transfer occurs for either a single transfer or at the start of a 
burst of transfers. Figure 4-3 shows a typical NONSEQUENTIAL read transfer 
including wait states.

Figure 4-3 Nonsequential transfer

The following points should be noted:

• The address and control signals start to change in the BCLK HIGH phase before 
the transfer starts. 

• For a NONSEQUENTIAL transfer a valid address may not be available until 
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• The decoder, which requires a stable address in order to select the correct slave, 
will automatically insert a wait state in the first cycle of NONSEQUENTIAL 
transfers. This is referred to as a DECODE cycle and provides an adequate time 
for the decoder to examine the high order address lines and assert the appropriate 
DSELx during the HIGH phase of the DECODE cycle.

• For the remaining cycles of the transfer, the slave will provide a transfer 
response and the data exchange will occur between the master and slave.

Note

In certain system designs, which are typically those with a low-frequency system clock, 
the address is valid early enough in the BCLK HIGH phase before the start of the 
transfer, allowing the decoder to generate a valid DSELx signal before the falling edge 
of BCLK. Such systems do not require the addition of a DECODE cycle at the start of 
the NONSEQUENTIAL transfers and the operation of such a system is described in 
more detail in Address decode on page 4-14.

• The data bus, BD[31:0], must be valid by the falling edge of BCLK at the end of 
the transfer. During a write cycle, the bus master is responsible for driving the 
data bus, which it will do from the start of the clock HIGH phase, in order that 
the slave may accept valid data by the falling edge of the clock. During a read 
cycle the appropriate slave must drive the data bus, such that it is valid by the end 
of the HIGH phase.

• Because a number of different bus slaves may drive data on to the ASB it is 
necessary to ensure that different slaves do not overlap when driving data onto 
the bus. An entire phase of non-overlap is provided as slaves and masters may 
not drive data during the clock LOW phase at the start of a NONSEQUENTIAL 
transfer.

• As many of the bus signals are shared and have turnaround periods when there is 
no active driver, it is necessary to ensure that bus hold cells are provided to 
prevent floating levels being present on the bus.

4.3.2 Sequential transfer

A SEQUENTIAL transfer occurs when the address is related to that of the previous 
transfer. The control information, as indicated by BWRITE, BPROT and BSIZE, will 
be the same as the previous transfer.

If the SEQUENTIAL transfer follows a NONSEQUENTIAL or another 
SEQUENTIAL transfer, the address can be calculated by using the previous size and 
address. For example a burst of word accesses would be to addresses A, A+4, A+8, 
whereas a burst of halfword accesses would be to addresses A, A+2, A+4.
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If a SEQUENTIAL transfer follows an ADDRESS-ONLY cycle then the address will 
be the same as that of the ADDRESS-ONLY cycle. This combination of an ADDRESS-
ONLY followed by SEQUENTIAL allows both a single access using a SEQUENTIAL 
transfer and also allows a burst of transfers to start with a SEQUENTIAL transfer. An 
example of the use of an ADDRESS-ONLY followed by SEQUENTIAL is shown later 
in Figure 4-6.

Figure 4-4 shows a SEQUENTIAL transfer with one wait state. This closely resembles 
a NONSEQUENTIAL transfer. 

Figure 4-4 Sequential transfer
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• control information remains the same as the preceding transfer

• for a write the data bus is driven throughout the entire transfer.

The data bus, BD[31:0], can be driven throughout the entire transfer because, unlike the 
NONSEQUENTIAL case, there is no requirement to provide a period of time to allow 
for bus turnaround.

4.3.3 Address-only transfer

An ADDRESS-ONLY transfer indicates that no data transaction is required. During an 
ADDRESS-ONLY transfer it is possible that the address and control information may 
also be invalid. The only signals that must be driven to valid levels are:

• BTRAN - to indicate the type of the next transfer

• BLOK - to allow the arbitration process to continue.

As ADDRESS-ONLY transactions do not access slaves on the bus, they only require a 
single cycle and therefore the BWAIT signal will be LOW. This signal is driven by the 
bus decoder, as no slave will be selected during the ADDRESS-ONLY cycle. A bus 
master may perform a number of ADDRESS-ONLY transfers in succession if it does 
not require the bus for data transfer.

The ADDRESS-ONLY transfer can be used in three different ways:

• as a true IDLE cycle (when the bus master does not require the bus)

• to speculatively broadcast an address for the next transfer, without committing to 
the transfer

• to provide a turnaround cycle during bus master handover.
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If the ADDRESS-ONLY transfer is used as a true IDLE cycle then the address and 
control signals are not required to be valid at any point during the transfer (see
Figure 4-5).

Figure 4-5 Address-only transfer
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The second use of the ADDRESS-ONLY transfer is to speculatively broadcast the 
address for a transfer, without actually committing to the transfer (see Figure 4-6). 

Figure 4-6 Address-only transfer to start burst
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The final use of an ADDRESS-ONLY transfer is to provide a turnaround period during 
bus master handover (see Figure 4-7). 

Figure 4-7 Address-only transfer for bus master handover
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4.4 Address decode

In an ASB-based AMBA system the address decoding is performed by a centralized 
decoder. 

The decoder uses the type of each transfer to determine which of the following 
functions should be performed:

• For an ADDRESS-ONLY transfer the decoder will respond with a DONE 
transfer response and no slaves will be selected. During ADDRESS-ONLY 
transfers the decoder performs an address decode speculatively in case the 
ADDRESS-ONLY transfer is followed immediately by a SEQUENTIAL 
transfer.

• For NONSEQUENTIAL transfers (or when the previous transfer was terminated 
with a LAST transaction response) the decoder will insert a single wait state at 
the start of the transfer to allow sufficient time for address decoding (although 
the additional wait state may not be required in all systems).

The additional wait state inserted by the decoder is referred to as a DECODE 
cycle and during the DECODE cycle no select signals, DSELx, are asserted.

In the second cycle of the transfer the decoder will either select the appropriate 
slave or provide an ERROR transfer response.

An ERROR response is provided in the following circumstances:

• there are no slaves present at the address of the transfer

• the transfer is to a protected region of memory

• the alignment of the transfer is not supported by the memory system.

In the more usual case of a valid transfer, the decoder will assert the appropriate 
slave DSELx signal and allow the selected slave to provide the transfer response 
for the remaining cycles of the transfer.

• For SEQUENTIAL transfers the decoder asserts the appropriate DSELx signal 
and the selected slave provides the transfer response. It is not necessary for the 
decoder to decode the address as this will have been performed in a previous 
NONSEQUENTIAL or ADDRESS-ONLY transfer.

As the decoder does not perform an address decode on SEQUENTIAL transfers 
it is necessary for the slave to provide a LAST transfer response if a transfer is 
about to cross a memory boundary. The decoder is also responsible for 
generating an internal version of the LAST signal when the decoder detects that 
a SEQUENTIAL transfer will cross a memory boundary.

The insertion of a DECODE cycle on NONSEQUENTIAL transfers can be used to 
improve the performance of the system. In a typical design the time required for address 
decoding will increase the critical path of an access to a slave and often result in the 
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need for additional wait states. The decoder can be used to reduce this overhead by 
automatically inserting a DECODE cycle on NONSEQUENTIAL transfers only, but 
allowing SEQUENTIAL transfers to complete without additional wait states.

In some systems, typically those with a low clock frequency, additional wait states are 
not required for address decoding and in such systems the decoder may be simplified, 
such that both SEQUENTIAL and NONSEQUENTIAL transfers occur without the 
addition of a DECODE cycle.
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4.5 Transfer response

For every transfer that is initiated by a bus master a response must be generated and this 
is provided either by the decoder or by the selected bus slave. The transfer response is 
provided using the BWAIT, BERROR and BLAST signals, which are driven during 
the LOW phase of the clock.

Figure 4-8 shows an example of how the transfer response is used to insert three wait 
states in order to extend a transfer.

Figure 4-8 Transfer response

The following transfer responses are available:
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LAST The transfer has completed successfully, but the slave is unable to 
accept further burst transfers or a memory boundary has been 
reached. This response is identical to DONE for the bus master, 
but indicates to the decoder that it must insert a DECODE cycle at 
the start of the next transfer. 

RETRACT The transfer has not yet completed, so the bus master should retry 
the transfer. The RETRACT response can be used by a slave to 
signal to a bus master that the transfer can complete, but this may 
take a number of bus cycles. 

Using the RETRACT response prevents the bus from being locked up by a transfer 
which may take a long time to complete and frees the bus for use by a higher priority 
bus master.

Unlike the other response codes, which take a single cycle, the RETRACT response is 
a two-stage response, as shown in Figure 4-9. 

Figure 4-9 Retract operation
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The following points should be noted:

• In the first stage the slave signals to the bus master that a RETRACT is going to 
take place, using the RETNEXT response (BWAIT, BLAST and BERROR all 
HIGH).

• In the second stage the transfer is completed when the slave provides the 
RETRACT response (BWAIT LOW, BLAST and BERROR both HIGH). 

This two-stage response provides the bus master with adequate warning that it should 
not consider the transfer to have completed when the BWAIT signal goes LOW.

All bus masters must support the RETRACT mechanism, however not all slaves are 
required to implement the RETRACT response. Typically, a RETRACT response 
would only be provided by a slave which does not have a short guaranteed completion 
time and hence could deadlock the bus for a significant period of time.

For most transfers the response will be provided by the selected bus slave, however the 
decoder provides the response when:

• the transfer is ADDRESS-ONLY

• the transfer is to an area of memory where there are no bus slaves

• an access violation occurs to a protected region of memory.



AMBA ASB

ARM IHI 0011A © Copyright ARM Limited 1999. All rights reserved. 4-19

4.6 Multi-master operation

The AMBA bus specification supports multiple bus masters on the high-performance 
ASB. A simple two-wire request and grant mechanism is implemented between the 
arbiter and each bus master. The arbiter ensures that only one bus master is active on 
the bus and also ensures that when no masters are requesting the bus a default master is 
granted.

The specification also supports a shared lock signal. This allows bus masters to indicate 
that the current transfer should not be separated from the following transfer and will 
prevent other bus masters from gaining access to the bus until the locked transfers have 
completed.

Efficient arbitration is important to reduce dead-time between successive masters being 
active on the bus. The bus protocol supports pipelined arbitration, such that arbitration 
for the next transfer is performed during the current transfer.

The arbitration protocol is defined, but the prioritization is flexible and left to the 
application. Typically, however, the test interface would be given the highest priority 
to ensure test access under all conditions. Every system must also include a default bus 
master, which is granted the bus when no bus masters are requesting it.

The request signal, AREQx, from each bus master to the arbiter indicates that the bus 
master requires the bus. The grant signal from the arbiter to the bus master, AGNTx, 
indicates that the bus master is currently the highest priority master requesting the bus.

The bus master:

• must drive the BTRAN signals during BCLK HIGH when AGNTx is HIGH

• will become granted when AGNTx is HIGH and BWAIT is LOW on a rising 
edge of BCLK.

The shared bus lock signal, BLOK, indicates to the arbiter that the following transfer is 
indivisible from the current transfer and that no other bus master should be given access 
to the bus.

A bus master must always drive a valid level on the BLOK signal when granted the bus 
to ensure that the arbitration process can continue, even if the bus master is not 
performing any transfers.



AMBA ASB

4-20 © Copyright ARM Limited 1999. All rights reserved. ARM IHI 0011A

4.6.1 Arbiter

The arbiter functions as follows:

1. Bus masters assert AREQx during the HIGH phase of BCLK.

2. The arbiter samples all AREQx signals on the falling edge of BCLK.

3. During the LOW phase of BCLK the arbiter also samples the BLOK signal and 
then asserts the appropriate AGNTx signal:

• if BLOK is LOW, then the arbiter will grant the highest priority bus 
master

• if BLOK is HIGH, then the arbiter will keep the same bus master granted.

The arbiter can update the grant signals every bus cycle. However, a new bus master 
can only become granted and start driving the bus when the current transfer completes, 
as indicated by BWAIT being LOW. Therefore, it is possible for the potential next bus 
master to change during waited transfers.

The BLOK signal is ignored by the arbiter during the single cycle of handover between 
two different bus masters.

If no bus masters are requesting the bus then the arbiter must grant the default bus 
master.

The arbitration protocol is defined, but the prioritization is flexible and left to the 
application. A simple fixed-priority scheme may be used. Alternatively, a more 
complex scheme can be implemented if required by the application.

4.6.2 Bus master handover

Bus master handover occurs when a bus master, which is not currently granted the bus, 
becomes the new granted bus master.

A bus master becomes granted when AGNTx is HIGH and BWAIT is LOW. AGNT 
HIGH indicates that the bus master is currently the highest priority master requesting 
the bus and BWAIT LOW indicates the previous transfer has completed.



AMBA ASB

ARM IHI 0011A © Copyright ARM Limited 1999. All rights reserved. 4-21

Figure 4-10 shows the bus master handover process.

Figure 4-10 Bus master handover
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• The new bus master starts to drive the address bus and control signals during the 
clock LOW phase. The first transfer may then commence in the following bus 
cycle.

During a waited transfer, bus master handover may be delayed and it is possible that the 
AGNTx to a particular bus master may be asserted and then negated, if another higher 
priority bus master then requests the bus, before the current transfer has completed.

4.6.3 Default bus master

Every system must be designed with a single default bus master, which will be granted 
when no other bus master is requesting the bus. The default bus master is responsible 
for driving the following signals to ensure the bus remains active:

• BTRAN must be driven to indicate ADDRESS-ONLY transfer

• BLOK must be driven LOW.

4.6.4 Locked transfers

It is important that bus masters do not attempt to perform locked transfers to slaves 
which can give a RETRACT response. There are two reasons for this:

• The bus could remain locked for a large number of cycles.

• If the RETRACT occurs on the last transfer of the locked sequence, then the 
arbiter could have changed ownership of the bus to the next master before it 
completes and therefore the final transfer will not have been locked to the 
sequence.
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4.7 Reset operation

The reset signal, BnRES, is active LOW and may be asserted asynchronously to 
guarantee the bus is in a safe state. During reset the following actions occur on the bus:

• the arbiter grants the default bus master

• the default bus master must:

• drive BTRAN to indicate ADDRESS-ONLY transfer

• drive BLOK LOW to allow arbitration.

• all other bus masters tristate shared bus signals

• the decoder must:

• de-assert all slave select signals, DSELx
• provide the appropriate transfer response.

• all slaves tristate shared bus signals.

4.7.1 Exit from reset

Figure 4-11 shows an example of the exit from reset sequence.

Figure 4-11 Exiting from reset
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• During the clock HIGH phase of cycle C1 the default bus master may drive the 
BTRAN signal to indicate that it wishes to start a transfer.

• The transfer will start during cycle C2 and, in the example shown, the transfer is 
waited and continues into cycle C3.
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4.8 Description of ASB signals

This section provides more detailed information about all the AMBA ASB signals, 
including their intended use and phase-accurate timing requirements.

It is necessary to ensure that bus hold cells are provided to prevent floating levels being 
present on the bus. This is possible because many of the bus signals are shared, and have 
turnaround periods when there is no active driver.

4.8.1 Clock

BCLK is the primary clock, which is used to time all bus transfers. Both edges of the 
clock are used.

4.8.2 Reset

A single active LOW reset signal, BnRES, is supported which is used to reset the bus. 
The reset signal may be asserted LOW asynchronously during either clock phase, but is 
always de-asserted during the LOW phase of BCLK.

Figure 4-12 Reset signal

During reset the following actions occur on the bus:
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• drive BTRAN to indicate ADDRESS-ONLY transfer
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• all slaves tristate shared bus signals.
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In the majority of bus masters and slaves the BnRES signal will be used to reset both 
the bus interface and the main core of the component. However, it is acceptable for 
some system elements, such as a real-time clock, to use BnRES to only reset the bus 
interface. Such system elements would typically have a second reset input to allow the 
component core to be reset at initial power-up and for testing purposes.

4.8.3 Transfer type

Before a transfer starts the bus master indicates which type of the transfer it is, using 
BTRAN[1:0]. The following transfer types can be set:

• ADDRESS-ONLY

• NONSEQUENTIAL

• SEQUENTIAL.

Table 4-1 shows the encoding of the BTRAN[1:0] signals:

From the table it can be deduced that BTRAN[1] can be used to determine that a data 
transfer is required next cycle.

Table 4-1 BTRAN encoding

BTRAN
Transfer type Description

[1] [0]

0 0 ADDRESS-ONLY Used when no data movement is required. The three 
main uses for ADDRESS-ONLY transfers are:
• for IDLE cycles
• for bus master handover cycles
• for speculative address decoding without 

committing to a data transfer.

0 1 - Reserved

1 0 NONSEQUENTIAL Used for single transfers or for the first transfer of a 
burst. The address of the transfer is unrelated to the 
previous bus access.

1 1 SEQUENTIAL Used for successive transfers in a burst. The address of 
a SEQUENTIAL transfer is always related to the 
previous transfer.
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The BTRAN signals are driven by a bus master during the HIGH phase of BCLK when 
the AGNTx input is HIGH (see Figure 4-13).

Figure 4-13 BTRAN timing

In a multi-master system, the bus master that drives BTRAN may change during an 
extended transfer. Therefore, BTRAN must only be considered valid when the previous 
transfer has completed, as indicated by BWAIT LOW.

4.8.4 Address and control information

The address and control signals are:

• address bus - BA[31:0]
• transfer direction - BWRITE
• transfer size - BSIZE[1:0]
• protection information - BPROT[1:0].

4.8.5 Address bus

The 32-bit address bus, BA[31:0], provides the address of the transfer. All transfers are 
memory-mapped and therefore all memory and peripherals within the system must have 
an address range within which they are accessed. The decoder uses the address bus 
(usually the higher order bits) to determine which bus slave is to be accessed.

4.8.6 Transfer direction

The BWRITE  signal is used to indicate the direction of the transfer (see Table 4-2). 
When BWRITE  is LOW the transfer is a read access and when BWRITE  is HIGH the 
transfer is a write access.

BCLK

BTRAN[1:0] Transfer
type

Table 4-2 BWRITE encoding

BWRITE Transfer direction

0 Read transfer

1 Write transfer
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4.8.7 Transfer size

BSIZE[1:0] encodes the size of a transfer (see Table 4-3). Byte, halfword and word are 
all defined, with the final encoding being reserved for future use.

When performing transfers that are narrower than the data bus, such as a byte or 
halfword transfer, the bus master may replicate the data across the bus, making the bus 
master effectively bi-endian. When responding to read cycles, a typical slave will not 
replicate the data on the bus and therefore it is important that the master is expecting 
data on the same byte lane as that which the slave is driving.

4.8.8 Protection information

The bus master may use the BPROT signals to provide additional information about 
the transfer it is performing (see Table 4-4). This information is primarily intended for 
use by the decoder when it is acting as a bus protection unit and the majority of bus 
slaves will not use these signals.

Table 4-3 BSIZE encoding

BSIZE
Transfer width

[1] [0]

0 0 Byte (8 bits)

0 1 Halfword (16 bits)

1 0 Word (32 bits)

1 1 Reserved

Table 4-4 BPROT encoding

BPROT
Transfer privilege

[1] [0]

- 0 Opcode fetch

- 1 Data access

0 - User access

1 - Privileged access
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4.8.9 Address and control signal timing

The address and control information is generated by the bus master from the rising edge 
of BCLK. However, the timing of the address and control information is considered 
separately for NONSEQUENTIAL and SEQUENTIAL transfer types. This is because 
a bus master will typically have significantly different timing parameters in each case.

It is a common characteristic that bus masters will have fast address and control output 
valid timings for SEQUENTIAL transfers, as shown in Figure 4-14. This is because a 
bus master is usually able to generate a SEQUENTIAL address well before the start of 
the transfer and therefore the output valid time from the bus master is mainly dependent 
on the time required to drive the new value onto the bus.

Figure 4-14 Sequential address and control timing
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For NONSEQUENTIAL transfers the bus master will often have significantly slower 
output valid times for address and control signals, compared to those for 
SEQUENTIAL transfers and this is shown in Figure 4-15.

Figure 4-15 Nonsequential address and control timing
with low-frequency and high-frequency clocks
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common for the address and control output valid time to be greater than a clock phase, 
thus resulting in the address not becoming valid until the BCLK LOW phase at the start 
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For ADDRESS-ONLY transfers the address and control information is not valid. In the 
special case of the ADDRESS-ONLY followed immediately by a SEQUENTIAL 
transfer, as shown in Figure 4-16, the bus master generates the address and control 
information during the ADDRESS-ONLY transfer, such that it is valid throughout the 
BCLK HIGH phase before the start of the SEQUENTIAL transfer.

Figure 4-16 Address-only followed by sequential transfer
address and control timing
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4.8.10 Tristate enable of address and control signals

A bus master may only drive the address and control signals when the bus master is 
granted the bus. To allow for a period of bus turnaround, when a bus master is first 
granted the bus it will not drive in the BCLK HIGH phase before the first transfer. 
Instead, the bus master must always start a period of bus ownership with an ADDRESS-
ONLY transfer and the address and control signals are not driven until the BCLK LOW 
phase of the ADDRESS-ONLY transfer (see Figure 4-17).

Figure 4-17 Address and control signals during bus master handover
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4.8.11 Slave select signals

Each ASB slave in the system has a DSEL select input signal. This signal indicates that 
the slave is responsible for supplying a transfer response and that a data transfer is 
required. The signal name DSELx is used to indicate the DSEL signal to slave x.

There is one DSELx signal for each slave on the ASB and these signals are generated 
by the decoder. Only one DSELx signal will be active during a transfer and there may 
be cycles when no DSELx signal is active, such as during ADDRESS-ONLY transfers.

DSELx changes during the BCLK HIGH phase before the start of a transfer and 
remains valid during the transfer. It will change for the next transfer in the BCLK 
HIGH phase following a transfer response with BWAIT LOW.

When designing a system there are two options for the implementation of an ASB 
decoder:

• Decoder with decode cycles

• Decoder without decode cycles on page 4-34. 

This choice is fixed at the design stage and will be based on a timing analysis of the 
system. In general, a system that is operating up to the maximum speed of the processor 
will require DECODE cycles. It is only those systems which operate at a frequency 
significantly lower than the possible maximum that do not require DECODE cycles.

Decoder with decode cycles

In systems with a high clock frequency the critical path to decode the address and select 
a slave within a single clock phase tends to limit the maximum bus clock speed. In such 
systems the decoder can be used to automatically insert a wait state, or DECODE cycle, 
at the start of every NONSEQUENTIAL transfer. This implementation allows 
SEQUENTIAL transfers to continue to operate without the addition of a wait state, as 
it is known that the address decoding critical path can be avoided on SEQUENTIAL 
transfers, thus resulting in an overall improvement in bus bandwidth.
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For NONSEQUENTIAL transfers DSELx is asserted in the BCLK HIGH phase during 
the DECODE cycle, as shown in Figure 4-18 below.

Figure 4-18 Select signal timing with decode cycle

• When DECODE cycles are implemented the timing of DSELx is dependent only 
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Figure 4-19 Select signal timing without decode cycle

The select signal becomes valid during the HIGH phase of BCLK before the transfer 
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Wait response

BWAIT is used to indicate when a transfer may complete. BWAIT is asserted HIGH 
when the slave requires extra bus cycles to complete the current transfer. BWAIT LOW 
indicates that the transfer may finish. Whether or not the transfer has completed 
successfully can only be determined by examining the other transfer response signals.

Error response

An error condition is signalled by the BERROR signal. This may be used to indicate a 
failed transfer, a transfer to an address where there is no slave device or a protection 
error.

Many simple bus slaves will not implement error logic and will therefore have a fixed 
response of BERROR LOW.

BERROR is also used in conjunction with BLAST to indicate a RETRACT operation. 
When both these signals are HIGH this indicates that a bus RETRACT is required.

Last response

BLAST is used to signal if the current transfer must be the last of a burst. This would 
typically be used to prevent a burst from continuing over a page boundary or other burst 
length limit.

BLAST is used by the decoder to make sure that the following transfer has the same 
characteristics as a NONSEQUENTIAL type transfer, rather than a burst transfer. 
Typically this involves ensuring there is adequate time to perform a new address 
decode.

Many bus slave devices will be able to accept any number of burst accesses and these 
slaves will have a fixed response of BLAST LOW.

BLAST is also used in conjunction with BERROR to indicate a RETRACT operation. 
When both these signals are HIGH this indicates that a bus RETRACT is required.

Bus retract

Slaves that cannot guarantee to complete transfers in a small number of wait states can 
potentially block the bus and stop higher priority transfers occurring. To prevent such 
slaves impacting the overall system latency a RETRACT mechanism is provided which 
allows a slave to indicate that a transfer is unable to complete at present, but the 
operation should be retried until it is able to complete successfully.
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A RETRACT is performed in a two stage process, as shown in Figure 4-20. 

Figure 4-20 Retract operation
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Response combinations

Table 4-5 shows the combinations of the three slave transfer response signals.

To ensure that the bus remains synchronized, a transfer response must be driven every 
cycle. During bus transfers, when a slave is selected and its appropriate DSELx signal 
is asserted, the slave is responsible for driving the transfer response signals.

The bus decoder is responsible for driving the transfer response signals during:

• ADDRESS-ONLY transfers

• DECODE cycles

• transfers to an address space where no slave is defined

• transfers to protected areas, when the access permissions are not met

• unaligned transfers which are not supported by the memory system.

Table 4-5 Transfer response combinations

BWAIT BLAST BERROR Status Description

0 0 0 DONE Complete, transfer successful

0 0 1 ERROR Complete, transfer error

0 1 0 LAST Complete, cannot continue with burst

0 1 1 RETRACT Complete, bus RETRACT

1 0 0 WAIT Incomplete, insert wait cycle

1 0 1 - Reserved

1 1 0 - Reserved

1 1 1 RETNEXT Bus RETRACT next cycle
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Transfer response timing

The transfer response signals must be set up valid before the rising edge of BCLK (see 
Figure 4-20).

Figure 4-21 Transfer response signal timing
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4.8.13 Data bus

The bidirectional data bus, BD[31:0], is used to transfer data between bus masters and 
slaves. The size and direction of the transfer is given by the control signals, as described 
in Address and control information on page 4-27.

The data bus must not be driven during the first BCLK LOW phase of a 
NONSEQUENTIAL transfer. It may be driven, by the appropriate master or slave, at 
all other times except reset.

During a write transfer:

• the master drives the data bus during all phases of the transfer, except the first 
BCLK LOW phase of a NONSEQUENTIAL transfer

• the slave does not drive the bus.

During a read transfer:

• The master does not drive the data bus.

• The slave must drive the data bus during the last BCLK HIGH phase of the 
transfer. For the rest of the transfer, the slave may drive the data bus or leave it 
tristate, with the provision that it is not driven during the first BCLK LOW phase 
of a NONSEQUENTIAL transfer.

The following diagrams show some examples of how the data bus is driven.
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Figure 4-22 shows an example of a NONSEQUENTIAL write transfer. 

Figure 4-22 Nonsequential write transfer

The data bus is driven by the bus master, except for the BCLK LOW phase of the first 
cycle. Not driving the data bus at the start of NONSEQUENTIAL transfers provides a 
full phase of turnaround between different data bus drivers.
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When a write transfer is extended using BWAIT, the data remains valid through the 
BCLK LOW phase of the extra cycles that are required to complete the transfer, as 
shown in Figure 4-23.

Figure 4-23 Extended write transfer
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For SEQUENTIAL transfers the bus master may drive data during the LOW phase of 
BCLK at the start of the transfer, as shown in Figure 4-24. This is permitted as a phase 
of turnaround is not required for SEQUENTIAL transfers.

Figure 4-24 Sequential write transfer
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During read cycles the slave drives the data bus and, as in the write cycle case, for 
NONSEQUENTIAL transfers the data bus is not driven in the BCLK LOW phase of 
the first cycle (see Figure 4-25). The bus slave may then drive the bus throughout the 
rest of the transfer.

Figure 4-25 Read transfer

There is no requirement for the slave to drive the data bus throughout the transfer. The 
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It is important to note that AGNTx does not indicate which master is currently granted 
the bus. Instead, it shows which master is currently the highest priority and at the 
completion of a transfer, as indicated by BWAIT LOW, the master which has AGNTx 
asserted is granted the bus.

AGNTx is changed by the arbiter during the LOW phase of BCLK and remains valid 
through the HIGH phase.

When AGNTx is HIGH, the master must:

• drive the BTRAN signals during BCLK HIGH

• become granted when BWAIT is LOW.

BLOK - Bus lock

BLOK is the shared bus lock signal. This signal indicates the following transfer is 
indivisible from the current transfers and no other bus master should be given access to 
the bus.

A master must always drive a valid level on the BLOK signal when granted the bus, 
even if the master is not performing any transfers. This is necessary to ensure the 
arbitration process can continue.

If BLOK is LOW the arbiter will grant the highest priority master requesting the bus.

If BLOK is HIGH the arbiter will keep the same master granted.

BLOK is sampled by the arbiter during the LOW phase of BCLK and it must be valid 
such that the arbiter can generate valid AGNTx outputs before the rising edge of 
BCLK. BLOK is ignored by the arbiter during the bus master handover cycle.
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4.9 About the ASB AMBA components

This section describes each of the elements in an AMBA system and provides the 
generic timing parameters that are required to analyze an ASB-based AMBA design.

The following notation is used for the timing parameters:

• Tis - input setup time

• Tih - input hold time

• Tov - output valid time

• Toh - output hold time.

Unless otherwise stated, the timing parameters apply to both the rising and falling edges 
of the signal. Tristate enable and disable times are not explicitly specified. All tristate 
disable times must be less than a phase of BCLK to prevent a bus clash occurring. In 
certain cases the tristate enable time may need to be factored in to the output valid time 
if the enabling of the tristate driver is the dominant factor.
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4.10 ASB bus slave

An ASB bus slave responds to transfers initiated by bus masters within the system. The 
slave uses a DSEL select signal from the decoder to determine when it should respond 
to a bus transfer. All other signals required for the transfer, such as the address and 
control information, will be generated by the bus master.

The decoder greatly simplifies the slave interface and removes the need for the slave to 
understand the different types of transfer that may occur on the bus.

4.10.1 Interface diagram

Figure 4-26 shows an ASB bus slave interface.

Figure 4-26 ASB bus slave interface
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DONE The transfer has completed successfully.

LAST The transfer has completed successfully, but the slave is unable to 
accept further burst transfers or a memory boundary has been 
reached.

ERROR The transfer has not completed successfully. The error condition 
will be signalled to the bus master so that it is aware the transfer 
has not completed correctly.

RETRACT The transfer has not yet completed, so the bus master should retry 
the transfer. The RETRACT response is used by a slave to prevent 
the bus from being locked up by a transfer which may take many 
cycles to complete.

Many slaves will only use the WAIT and DONE responses and in this case, when a 
transfer response is supplied, both BERROR and BLAST will be LOW.

When the slave is not selected, as indicated by DSEL LOW, the transfer response 
signals must be tristate. The response signals must also be tristate during reset.

Data

The slave interface is implemented as a simple state machine, operating from the falling 
edge of the clock to determine when data transfer can occur. During reset the state 
machine enters the NOT_SELECTED state (see Figure 4-27).

Figure 4-27 ASB slave bus interface state machine

For write transfers the slave samples the data on the falling edge of the clock when in 
the SELECTED state. If required, the slave may extend the transfer using the transfer 
response signals described above.

For read transfers the slave must drive the data bus during the last clock HIGH phase of 
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data bus tristate until the last phase of the transfer.
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To avoid the slave having to determine whether the transfer is SEQUENTIAL or 
NONSEQUENTIAL it is usually simpler to design a slave which does not drive the data 
bus during the first phase of any transfer.

During reset or when the slave is NOT_SELECTED the data bus must be tristate.

4.10.3 Timing diagrams

The timing parameters related to an access to an ASB bus slave are shown in 
Figure 4-28.

Figure 4-28 ASB slave transfer

Address

Data

BWAIT
BERROR

BLAST

BD[31:0]
Write

BA[31:0]

DSEL

BnRES

BCLK

clklT clkhT

ihnresT isnresT

isdselT
ihdselT

Control
BWRITE

BSIZE[1:0]

isaT ihaT

isctlT ihctlT

Data
BD[31:0]

Read

ihdwT
isdwT

ohdrT
ovdrT

ovrespT
ohrespT



AMBA ASB

4-50 © Copyright ARM Limited 1999. All rights reserved. ARM IHI 0011A

4.10.4 Timing parameters

The timing parameters related to an ASB bus slave are given for input signals in 
Table 4-6 and for output signals in Table 4-7. Bidirectional signals can be found in both 
tables.

Table 4-6 ASB slave input parameters

Parameter Description

Tclkl BCLK LOW time

Tclkh BCLK HIGH time

Tisnres BnRES de-asserted setup to rising BCLK

Tihnres BnRES de-asserted hold after falling BCLK

Tisdsel DSEL setup to falling BCLK

Tihdsel DSEL hold after rising BCLK

Tisa BA[31:0] setup to falling BCLK

Tiha BA[31:0] hold after rising BCLK

Tisctl BWRITE and BSIZE[1:0] setup to falling BCLK

Tihctl BWRITE and BSIZE[1:0] hold after rising BCLK

Tisdw For write transfers, BD[31:0] setup to falling BCLK

Tihdw For write transfers, BD[31:0] hold after falling BCLK

Table 4-7 ASB slave output parameters

Parameter Description

Tovresp BWAIT, BERROR and BLAST valid after falling BCLK

Tohresp BWAIT, BERROR and BLAST hold after rising BCLK

Tovdr For read transfers, BD[31:0] valid after rising BCLK

Tohdr For read transfers, BD[31:0] hold after falling BCLK
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Note

If the bus slave is designed such that the decoder, address and control signals are all 
sampled on the falling edge of BCLK then an entire phase of input hold time is 
guaranteed by the bus protocol.

You can ensure that an entire phase of hold time is provided on the data bus by inserting 
an extra wait state into the transfer.
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4.11 ASB bus master

An ASB bus master has the most complex bus interface in an AMBA system. Typically 
an AMBA system designer would use predesigned bus masters and therefore would not 
need to be concerned with the detail of the bus master interface.

A bus master interface may also include a slave interface, either for test or for 
programming the operation of the bus master. In such cases a number of the interface 
signals will become shared between the master interface and slave interface.

4.11.1 Interface diagram

The interface diagram of an ASB bus master shows the main signal groups.

Figure 4-29 ASB bus master interface diagram

4.11.2 Bus master interface description
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GRANTED state machine

The GRANTED state machine is used to determine whether or not the bus master has 
been granted the bus. It is synchronized to the rising edge of BCLK and has only two 
states, GRANTED and NOT_GRANTED. The state diagram is shown in Figure 4-30.

Figure 4-30 Bus master granted state machine

The output from the state machine is the GRANTED signal, which is used in the main 
bus master state machine.
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4.11.3 Bus interface state machine

The main bus interface state machine is falling edge triggered and contains six states. 
The entire state diagram, shown in Figure 4-32, is quite complex but can be considered 
in four quadrants as shown in Figure 4-31: 

Figure 4-31 Bus interface state machine quadrants
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the transition to the next state is determined by the transfer response that is received. 
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Figure 4-32 Bus master main state machine
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and BLAST to control the exit from the ACTIVE state.

The reset conditions are not shown on the state diagram and, in a similar manner to the 
granted state machine, the main bus master state machine has a complex reset term. If 
AGNT is asserted during reset, when BnRES is LOW, the bus master is the default bus 
master and enters the BUSIDLE state. However, if AGNT is not asserted during reset 
then the bus master enters the IDLE state.
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Table 4-8 indicates the actions that must occur in each state.

BTRAN[1:0] tristate drivers are enabled when AGNT and BCLK are both HIGH.

Master address bus enable is used to control the tristate enable of BA[31:0], BWRITE, 
BSIZE[1:0], BPROT[1:0] and BLOK. Master data bus enable is used to control the 
tristate enable of BD[31:0].

Table 4-8 Actions that must occur in each state

Name Description Actions

IDLE The master does not 
require the bus and is not 
granted.

Internal BTRAN is ADDRESS-ONLY.
Master clock is enabled.
Master address bus is tristate.
Master data bus is tristate.

BUSIDLE The master does not 
require the bus, but has 
been granted anyway.

Internal BTRAN as indicated by master.
Master clock is enabled.
Master address bus enable is generated from 
GRANTED signal.
Master data bus is tristate.

HOLD The master requires the 
bus, but has not been 
granted.

Internal BTRAN is ADDRESS-ONLY.
Master clock is disabled.
Master address bus is tristate.
Master data bus is tristate.

HANDOVER This state provides bus 
turnaround when changing 
between different bus 
masters.

Internal BTRAN is SEQUENTIAL.
Master clock is disabled.
Master address bus enable is generated from 
GRANTED signal.
Master data bus is tristate.

ACTIVE Active state when data 
transfers occur.
Exiting this state is 
dependent on the transfer 
response.

Internal BTRAN as indicated by master.
Master clock enable is derived from BWAIT
Master address bus enable is generated from 
GRANTED signal.
Master data bus enable is enabled if a write 
transaction.

RETRACT Retract state, where the 
rest of the elements in the 
system see the transfer 
finish, but the bus master 
is not advanced.

Internal BTRAN is ADDRESS-ONLY.
Master clock is disabled.
Master address bus enable is generated from 
GRANTED signal.
Master data bus enable is enabled if a write 
transaction.
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4.11.4 Bus master timing diagrams

The following diagrams show the timing parameters related to an ASB bus master 
operating in an AMBA system:

• Figure 4-33 shows an ASB bus master nonsequential transfer

• Figure 4-34 shows an ASB bus master sequential transfer on page 4-58

• Figure 4-35 shows an ASB master address-only transfer on page 4-59

• Figure 4-36 shows ASB bus master arbitration and reset signals on page 4-60.

Figure 4-33 ASB bus master nonsequential transfer

For the NONSEQUENTIAL transfer, shown in Figure 4-33, the address and control 
signals become valid in the BCLK HIGH phase before the start of the transfer. An 
important feature of the AMBA protocol is to allow for poor output valid times on 
NONSEQUENTIAL transfers, which is provided through the automatic insertion of a 
wait state at the start of every NONSEQUENTIAL transfer by the decoder.
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Figure 4-34 ASB bus master sequential transfer

A SEQUENTIAL transfer has different timing parameters for the address and control 
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For an ADDRESS-ONLY transfer the address and control signals may be driven in the 
clock HIGH phase before the start of the transfer, or in the case of bus master handover 
may only be driven during the clock LOW phase of the transfer itself (see Figure 4-35). 
The address and control valid timing parameters are only relevant when the ADDRESS-
ONLY transfer is followed immediately by a SEQUENTIAL transfer and in this case 
the address and control signals must be driven such that they are valid during the LOW 
phase of the ADDRESS-ONLY transfer, which in turn means they are valid throughout 
the clock HIGH phase that precedes the SEQUENTIAL transfer.

Figure 4-35 ASB master address-only transfer
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Figure 4-36 shows ASB bus master arbitration and reset signals. 

Figure 4-36 ASB bus master arbitration and reset signals

The BnRES signal may be asserted asynchronously, so there is no setup and hold 
parameter relating to the assertion of the signal. The AREQ signal, which is an output 
from the bus master, changes during the HIGH clock phase and the AGNT signal, 
which is returned from the arbiter changes during the LOW clock phase.

4.11.5 Timing parameters

The timing parameters related to an ASB bus master operating in an AMBA system are 
also shown in textual form in the following two tables. Table 4-9 details the input 
signals. Table 4-10 details output signals. Bidirectional signals can be found in both 
tables.
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BnRES

BCLK

ihnresT isnresT
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AREQx
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BLOK
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Table 4-9 Bus master input timing parameters

Parameter Description

Tclkl BCLK LOW time

Tclkh BCLK HIGH time

Tisnres BnRES de-asserted setup to rising BCLK
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Tihnres BnRES de-asserted hold after falling BCLK

Tisresp BWAIT, BERROR and BLAST setup to rising BCLK

Tihresp BWAIT, BERROR and BLAST hold after rising BCLK

Tisdr For read transfers, BD[31:0] setup to falling BCLK

Tihdr For read transfers, BD[31:0] hold after falling BCLK

Tisagnt AGNT setup to rising BCLK

Tihagnt AGNT hold after falling BCLK

Table 4-10 Bus master output timing parameters

Parameter Description

Tovtr BTRAN valid after rising BCLK

Tohtr BTRAN hold after falling BCLK

Tovan For NONSEQUENTIAL transfers, BA[31:0] valid after rising BCLK

Tovas For SEQUENTIAL transfers, BA[31:0] valid after rising BCLK

Tovaa For ADDRESS-ONLY transfers, BA[31:0] valid after falling BCLK

Toha BA[31:0] hold after rising BCLK

Tovctln For NONSEQUENTIAL transfers, BWRITE, BSIZE[1:0] and 
BPROT[1:0] valid after rising BCLK

Tovctla For ADDRESS-ONLY transfers, BWRITE, BSIZE[1:0] and BPROT[1:0] 
valid after falling BCLK

Tohctl BWRITE, BSIZE[1:0] and BPROT[1:0] hold after rising BCLK

Tovdwn For NONSEQUENTIAL write transfers, BD[31:0] valid after rising BCLK

Tovdws For SEQUENTIAL write transfers, BD[31:0] valid after falling BCLK

Tohdw For write transfers, BD[31:0] hold after falling BCLK

Table 4-9 Bus master input timing parameters (continued)

Parameter Description
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Tovlok BLOK valid after rising BCLK

Tohlok BLOK hold after rising BCLK

Tovareq AREQ valid after rising BCLK

Tohareq AREQ hold after rising BCLK

Table 4-10 Bus master output timing parameters (continued)

Parameter Description
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4.12 ASB decoder

The decoder in an AMBA system is used to perform a centralized address decoding 
function, which gives two main advantages:

• It improves the portability of peripherals, by making them independent of the 
system memory map.

• It simplifies the design of bus slaves, by centralizing the address decoding and 
bus control functions.

The three main tasks of the decoder are:

• address decoder

• default transfer response

• protection unit.

An ASB decoder generates a select signal for each slave on the ASB bus and, under 
certain circumstances, will not select any slaves and provide the transaction response 
itself. 

The decoder greatly simplifies the slave interface and removes the need for the slave to 
understand the different types of transfer that may occur on the bus.

An important feature of the decoder is that it is able to improve the performance of a 
system by providing DECODE cycles for address decoding. As the decoder is able to 
recognize if the transfer is SEQUENTIAL or NONSEQUENTIAL it is a simple task for 
the decoder to only add a DECODE cycle when required.

The decoder actually helps to significantly improve the system performance. In a non-
AMBA system the critical path of, for example, a read transfer would be as follows:

1. Address out from master.

2. Address decode to select slave.

3. Data out and response from slave back to bus master.

However, in an AMBA system it is possible to remove the middle stage whenever the 
bus master is performing a SEQUENTIAL transfer, because it is known that the slave 
that is selected will be the same as the previous transfer. The decoder can use this fact 
to improve the system performance by only inserting a wait state for address decoding 
when needed, which is for NONSEQUENTIAL transfers. This is known as inserting a 
DECODE cycle.

In designs where the clock frequency is low enough that an additional wait state is not 
required for address decoding, then the role of the decoder is simplified.
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The decoder is also used to provide a number of bus maintenance functions. Firstly, the 
decoder can act as a simple protection unit, which can issue an ERROR response to a 
bus master which attempts to access an illegal or protected area of the memory map. 
The decoder also provides a transfer response during ADDRESS-ONLY transfers, 
when no slave is selected.

4.12.1 Interface diagram

Figure 4-37 shows an ASB decoder.

Figure 4-37 ASB decoder interface diagram

4.12.2 Decoder description

There are two possible implementations of the decoder, depending on the performance 
requirements of the system design: 

• The normal implementation of a decoder will include the insertion of DECODE 
cycles on NONSEQUENTIAL transfers and to break up burst transfers over 
memory boundaries. 

• In some system designs, typically with a low clock frequency, the DECODE 
cycle will not be required and hence a simpler decoder may be implemented.
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With decode cycles

The decoder is implemented as a state machine which operates from the falling edge of 
the clock and has four states (see Figure 4-38). During reset the state machine should 
enter the ADDRONLY state.

Figure 4-38 Decoder state machine with decode
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Transitions around the state machine are controlled by the transfer type for the next 
transfer, the transfer response from the current transfer and two internal decoder signals, 
DecLast and DecError. The WAIT, DONE, LAST, ERROR, RETNEXT and 
RETRACT shown on the state diagram correspond to the encodings of the transfer 
response signals.

DecLast is generated by the decoder when it detects that a SEQUENTIAL transfer is 
about to cross a memory boundary and is used in combination with the external BLAST 
signal to force the address to be decoded, even on SEQUENTIAL transfers.

DecError is another decoder internal signal and is generated when the decoder detects 
that:

• there are no slaves present at the address of the transfer

• the transfer is to a protected region of memory

• the alignment of the transfer is not supported by the memory system.

The decoder performs the following functions:

• In the ADDRONLY state:

• speculatively decodes the address

• provides a DONE transfer response during the BCLK LOW phase

• asserts DSELx during the BCLK HIGH phase if the transfer type for the 
next transfer is S-TRAN and the address is valid.

• In the DECODE state:

• decodes the address

• provides a WAIT transfer response during the BCLK LOW phase

• asserts DSELx during the BCLK HIGH phase if the address is valid.

• In the SLAVESEL state:

• the transfer response is driven by the selected slave

• keeps DSELx asserted while the transfer is waited, or if the next transfer is 
SEQUENTIAL and no LAST condition is detected.

• In the ERROR state:

• provides an ERROR transfer response during the BCLK LOW phase.
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Without decode cycles

A decoder which does not implement decode cycles has the DECODE state removed. 
This simplifies the state diagram, as shown in Figure 4-39.

Figure 4-39 Decoder state machine without decode
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4.12.3 Timing diagrams

The timing parameters for an ASB decoder with DECODE cycles are shown in Figure 
4-40. The parameters for a decoder without DECODE cycles are shown in Figure 4-41. 
The main difference between the two diagrams is that when DECODE cycles are not 
inserted then the timing of the DSEL signal becomes dependent on the address and 
control signal timing.

Figure 4-40 ASB decoder with decode cycles
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Figure 4-41 ASB decoder without decode cycles

4.12.4 Timing parameters

The timing parameters related to an ASB decoder are given in the following tables:

• Table 4-11 is for input signals

• Table 4-12 is for output signals

• Table 4-13 is for combinatorially generated outputs.
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Table 4-11 ASB decoder input parameters

Parameter Description

Tclkl BCLK LOW time

Tclkh BCLK HIGH time

Tisnres BnRES de-asserted setup to rising BCLK

Tihnres BnRES de-asserted hold after falling BCLK

Tistr BTRAN setup to falling BCLK

Tihtr BTRAN hold after falling BCLK

Tisresp BWAIT, BERROR and BLAST setup to rising BCLK

Tihresp BWAIT, BERROR and BLAST hold after rising BCLK

Table 4-12 ASB decoder output parameters

Parameter Description

Tovresp BWAIT, BERROR and BLAST valid after falling BCLK

Tohresp BWAIT, BERROR and BLAST hold after rising BCLK

Tovdsel DSEL valid after rising BCLK

Tohdsel DSEL hold after rising BCLK

Table 4-13 ASB decoder combinatorial parameters

Parameter Description

Ttrdsel Delay from valid BTRAN to valid DSEL

Tadsel Delay from valid BA to valid DSEL

Tctldsel Delay from valid BWRITE and BPROT[1:0] to valid DSEL
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4.13 ASB arbiter

The role of the arbiter in an AMBA system is to control which master has access to the 
bus. Every bus master has a two wire REQUEST and GRANT interface to the arbiter 
and on every cycle the arbiter uses a prioritization scheme to decide which bus master 
is currently the highest priority master requesting the bus.

A shared bus lock signal, BLOK, driven by the currently granted bus master is used to 
indicate that the current transfer is indivisible from the following transfer and no other 
master should be granted the bus.

The detail of the priority scheme is not specified and is defined for each application. It 
is acceptable for the arbiter to use other signals, either AMBA or non-AMBA, to 
influence the priority scheme that is in use. 

4.13.1 Interface diagram

Figure 4-42 shows the signal interface of an ASB arbiter.

Figure 4-42 ASB arbiter interface diagram
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During bus master handover the BLOK signal is not driven and hence the arbiter must 
assume that this signal is LOW.

The arbiter must retain a copy of which master is currently granted so it can:

• keep the current bus master granted if BLOK is asserted

• determine when the bus master changes, and so determine when there is a cycle 
of bus master handover.

4.13.3 Timing diagrams

Figure 4-43 shows the arbiter timing parameters.

Figure 4-43 ASB arbiter parameters
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4.13.4 Timing parameters

The timing parameters related to an ASB arbiter are given in the following tables:

• Table 4-14 is for input signals

• Table 4-15 is for output signals

• Table 4-16 is for combinatorially generated outputs.

Table 4-14 ASB arbiter input parameters

Parameter Description

Tclkl BCLK LOW time

Tclkh BCLK HIGH time

Tisnres BnRES de-asserted setup to rising BCLK

Tihnres BnRES de-asserted hold after falling BCLK

Tisareq AREQ setup to falling BCLK

Tihareq AREQ hold after rising BCLK

Tisresp BWAIT setup to rising BCLK

Tihresp BWAIT hold after rising BCLK

Table 4-15 ASB arbiter output parameters

Parameter Description

Tovagnt AGNT valid after falling BCLK

Tohagnt AGNT hold after falling BCLK

Table 4-16 ASB arbiter combinatorial parameters

Parameter Description

Tlokagnt Delay from valid BLOK to valid AGNT



AMBA ASB

4-74 © Copyright ARM Limited 1999. All rights reserved. ARM IHI 0011A



ARM IHI 0011A © Copyright ARM Limited 1999. All rights reserved. 5-1

Chapter 5
AMBA APB

This chapter introduces the Advanced Microcontroller Bus Architecture (AMBA) 
Advanced Peripheral Bus (APB) specification in the following sections:

• About the AMBA APB on page 5-2

• APB specification on page 5-4

• About the APB AMBA components on page 5-7

• APB bridge on page 5-8

• APB slave on page 5-11

• Interfacing APB to AHB on page 5-14

• Interfacing APB to ASB on page 5-20

• Interfacing rev D APB peripherals to rev 2.0 APB on page 5-22.
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5.1 About the AMBA APB

The Advanced Peripheral Bus (APB) is part of the Advanced Microcontroller Bus 
Architecture (AMBA) hierarchy of buses and is optimized for minimal power 
consumption and reduced interface complexity.

The AMBA APB should be used to interface to any peripherals which are low-
bandwidth and do not require the high performance of a pipelined bus interface.

The latest revision of the APB ensures that all signal transitions are only related to the 
rising edge of the clock. This improvement means the APB peripherals can be 
integrated easily into any design flow, with the following advantages:

• performance is improved at high-frequency operation

• performance is independent of the mark-space ratio of the clock

• static timing analysis is simplified by the use of a single clock edge

• no special considerations are required for automatic test insertion

• many Application-Specific Integrated Circuit (ASIC) libraries have a better 
selection of rising edge registers

• easy integration with cycle based simulators.

These changes to the APB also make it simpler to interface it to the new Advanced 
High-performance Bus (AHB).
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5.1.1 A typical AMBA-based microcontroller

An AMBA-based microcontroller typically consists of a high-performance system 
backbone bus, able to sustain the external memory bandwidth, on which the CPU and 
other Direct Memory Access (DMA) devices reside, plus a bridge to a narrower APB 
bus on which the lower bandwidth peripheral devices are located. Figure 5-1 shows the 
APB in a typical AMBA system.

Figure 5-1 The APB in a typical AMBA system
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5.2 APB specification

The APB specification is described under the following headings:

• State diagram

• Write transfer on page 5-5

• Read transfer on page 5-6.

5.2.1 State diagram

The state diagram, shown in Figure 5-2, can be used to represent the activity of the 
peripheral bus.

Figure 5-2 State diagram
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ENABLE In the ENABLE state the enable signal, PENABLE is asserted. 
The address, write and select signals all remain stable during the 
transition from the SETUP to ENABLE state.

The ENABLE state also only lasts for a single clock cycle and 
after this state the bus will return to the IDLE state if no further 
transfers are required. Alternatively, if another transfer is to 
follow then the bus will move directly to the SETUP state.

It is acceptable for the address, write and select signals to glitch 
during a transition from the ENABLE to SETUP states.

5.2.2 Write transfer

The basic write transfer is shown in Figure 5-3.

Figure 5-3 Write transfer
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changing after the rising edge of the clock. The first clock cycle of the transfer is called 
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The protocol only requires a clean transition on the enable signal. It is possible that in 
the case of back to back transfers the select and write signals may glitch.

5.2.3 Read transfer

Figure 5-4 shows a read transfer. 

Figure 5-4 Read transfer

The timing of the address, write, select and strobe signals are all the same as for the 
write transfer. In the case of a read, the slave must provide the data during the ENABLE 
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5.3 About the APB AMBA components

The following notation is used for the timing parameters:

• Tis - input setup time

• Tih - input hold time

• Tov - output valid time

• Toh - output hold time.
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5.4 APB bridge

The APB bridge is the only bus master on the AMBA APB. In addition, the APB bridge 
is also a slave on the higher-level system bus.

5.4.1 Interface diagram

Figure 5-5 shows the APB signal interface of an APB bridge.

Figure 5-5 APB bridge interface diagram
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signal can be active during a transfer.
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• Generates a timing strobe, PENABLE, for the transfer.
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5.4.3 Timing diagrams

The timing parameters for an APB bridge are shown in Figure 5-6.

Figure 5-6 APB bridge transfer
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5.4.4 Timing parameters

The timing parameters related to an APB bridge are given in Table 5-1 for input signals 
and Table 5-2 for output signals.

Table 5-1 APB bridge input parameters

Parameter Description

Tclkl PCLK LOW time

Tclkh PCLK HIGH time

Tisnres PRESETn de-asserted setup to rising PCLK

Tihnres PRESETn de-asserted hold after rising PCLK

Tisprd For read transfers, PRDATA setup to rising PCLK

Tihprd For read transfers, PRDATA hold after rising PCLK

Table 5-2 APB bridge output parameters

Parameter Description

Tovpen PENABLE valid after rising PCLK

Tohpen PENABLE hold after rising PCLK

Tovpsel PSEL valid after rising PCLK

Tohpsel PSEL hold after rising PCLK

Tovpa PADDR valid after rising PCLK

Tohpa PADDR hold after rising PCLK

Tovpw PWRITE valid after rising PCLK

Tohpw PWRITE hold after rising PCLK

Tovpwd For write transfers, PWDATA valid after rising PCLK

Tohpwd For write transfers, PWDATA hold after rising PCLK
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5.5 APB slave

APB slaves have a simple, yet flexible, interface. The exact implementation of the 
interface will be dependent on the design style employed and many different options are 
possible.

5.5.1 Interface diagram

Figure 5-7 shows the signal interface of an APB slave.

Figure 5-7 APB slave interface description
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5.5.3 Timing diagrams

The timing parameters related to an access to an APB bus slave are shown in Figure 5-8.

Figure 5-8 APB slave transfer
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5.5.4 Timing parameters

The timing parameters related to an APB slave are given in Table 5-3 for input signals 
and Table 5-4 for output signals.

Table 5-3 APB slave input parameters

Parameter Description

Tclkl PCLK LOW time

Tclkh PCLK HIGH time

Tisnres PRESETn de-asserted setup to rising PCLK

Tihnres PRESETn de-asserted hold after falling PCLK

Tispen PENABLE setup to rising PCLK

Tihpen PENABLE hold after rising PCLK

Tispsel PSEL setup to rising PCLK

Tihpsel PSEL hold after rising PCLK

Tispa PADDR setup to rising PCLK

Tihpa PADDR hold after rising PCLK

Tispw PWRITE setup to rising PCLK

Tihpw PWRITE hold after rising PCLK

Tispwd For write transfers, PWDATA setup to rising PCLK

Tihpwd For write transfers, PWDATA hold after rising PCLK

Table 5-4 APB slave output parameters

Parameter Description

Tovprd For read transfers, PRDATA valid after rising PCLK

Tohprd For read transfers, PRDATA hold after rising PCLK
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5.6 Interfacing APB to AHB

Interfacing the AMBA APB to the AHB is described in:

• Read transfers

• Write transfers on page 5-16

• Back to back transfers on page 5-18

• Tristate data bus implementations on page 5-19.

5.6.1 Read transfers

Figure 5-9 illustrates a read transfer. 

Figure 5-9 Read transfer to AHB
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The transfer starts on the AHB at time T1 and the address is sampled by the APB bridge 
at T2. If the transfer is for the peripheral bus then this address is broadcast and the 
appropriate peripheral select signal is generated. This first cycle on the peripheral bus 
is called the SETUP cycle, this is followed by the ENABLE cycle, when the 
PENABLE signal is asserted.

During the ENABLE cycle the peripheral must provide the read data. Normally it will 
be possible to route this read data directly back to the AHB, where the bus master can 
sample it on the rising edge of the clock at the end of the ENABLE cycle, which is at 
time T4 in Figure 5-9.

In very high clock frequency systems it may become necessary for the bridge to register 
the read data at the end of the ENABLE cycle and then for the bridge to drive this back 
to the AHB bus master in the following cycle. Although this will require an extra wait 
state for peripheral bus read transfers, it allows the AHB to run at a higher clock 
frequency, thus resulting in an overall improvement in system performance. A burst of 
read transfers is shown in Figure 5-10. All read transfers require a single wait state.

Figure 5-10 Burst of read transfers
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5.6.2 Write transfers

Figure 5-11 shows a write transfer.

Figure 5-11 Write transfer from AHB
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A burst of write transfers is shown in Figure 5-12. 

Figure 5-12 Burst of write transfers
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5.6.3 Back to back transfers

Figure 5-13 shows a number of back to back transfers. The sequence starts with a write, 
which is then followed by a read, then a write, then a read.

Figure 5-13 Back to back transfers
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5.6.4 Tristate data bus implementations

It is recommended that the AMBA APB is implemented with separate read and write 
data buses, which allows the use of either a multiplexed bus or OR-bus scheme to 
interconnect the various slaves on the APB. If a tristate bus is used then the read and 
write data buses may be combined into a single bus, as read data and write data never 
occur simultaneously.

Figure 5-14 illustrates that no special consideration is required if the data bus is 
implemented using tristate buffers. If the data bus is tristate in the SETUP cycle of a 
read transfer and whenever the bus is in the Idle state then an entire clock cycle of 
turnaround always occurs between different drivers of the data. For bursts of write 
transfers there is no turnaround as the bridge will drive data in the SETUP cycle of 
every transfer, however this is perfectly acceptable as the bridge is the only driver of the 
data bus for write transfers and therefore no turnaround period is required.

Figure 5-14 shows how the read and write data buses can be successfully combined into 
a single tristate data bus.

Figure 5-14 Tristate data bus
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5.7 Interfacing APB to ASB

Interfacing the AMBA APB to the ASB is described in:

• Write transfer

• Read transfer on page 5-21.

5.7.1 Write transfer

Figure 5-15 illustrates how an interface from ASB to APB can be constructed. The write 
transfer can occur with zero wait-states, although an additional wait state is required for 
a burst of writes.

Figure 5-15 Write transfer from ASB

BCLK

Addr 1

PADDR

PWRITE

PSEL

PENABLE

PWDATA

Addr 1

Data 1

BWRITE

BD

BWAIT

BA

Data



AMBA APB

ARM IHI 0011A © Copyright ARM Limited 1999. All rights reserved. 5-21

5.7.2 Read transfer

The read transfer will always require a single wait state (see Figure 5-16). In systems 
with a high clock frequency it may be necessary to insert an additional wait state to 
ensure that the read data has adequate time to pass through the bridge and become valid 
on the ASB.

Figure 5-16 Read transfer to ASB
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5.8 Interfacing rev D APB peripherals to rev 2.0 APB

When using a combination of peripherals, some designed to the revision 2.0 
specification and others designed to previous revisions, it is recommended that a 
revision 2.0 bridge is used and the earlier version peripherals are converted for use with 
the new bridge.

This section shows how a single revision D peripheral may be converted to the latest 
version of the APB. If a number of peripherals are to be converted it is more efficient 
to perform the conversion in a single centralized block.

There are two fundamental differences between the rev D and rev 2.0 APB 
specifications:

• the timing of the strobe signal compared to the enable signal

• the point at which read data is sampled.

To quickly determine whether a peripheral is designed to the rev D or rev 2.0 
specification, see if it has a PSTB input (in which case it is rev D) or a PENABLE input 
(in which case it is rev 2.0). Figure 5-17 shows the two stages that are required to 
interface an existing revision D peripheral. 

Figure 5-17 Interfacing a rev D peripheral
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Chapter 6
AMBA Test Methodology

This chapter describes the test interface used with AMBA module designs. It contains 
the following sections:

• About the AMBA test interface on page 6-2

• External interface on page 6-4

• Test vector types on page 6-6

• Test interface controller on page 6-7

• The AHB Test Interface Controller on page 6-12

• Example AMBA AHB test sequences on page 6-17

• The ASB test interface controller on page 6-25

• Example AMBA ASB test sequences on page 6-27.
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6.1 About the AMBA test interface

The AMBA test philosophy allows individual modules in the system to be tested in 
isolation. Each module is designed so it can be tested only using transfers from the bus 
and does not rely on the interaction of any other system element. Therefore it is 
necessary to have access to the inputs and outputs of the peripheral that are not directly 
connected to the bus and this is provided by a test harness.

Figure 6-1 Peripheral test harness
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A low gate-count Test Interface Controller (TIC) bus master module is required in the 
system to allow externally applied test vectors to be converted into internal bus 
transfers. 

The TIC uses a minimal three-wire handshake mechanism to control the application of 
test vectors and the data path of the External Bus Interface (EBI) is used to provide a 
high speed 32-bit parallel vector interface.

Figure 6-2 TIC and external bus interface interaction
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6.2 External interface

The external test interface consists of:

• a test clock

• three control signals

• a 32-bit test bus. 

Only two dedicated signal pins are required (TREQA and TACK) to control the entry 
and exit of test mode. The remaining signals can be provided by reusing existing device 
pins.

6.2.1 Test bus request A

TREQA is the test bus request A input signal and is required as a dedicated device pin.

During normal system operation the TREQA signal is used to request entry into the test 
mode. This will cause the test bus to become tristated, allowing test vectors to be 
applied.

During test this signal is used, in combination with TREQB, to indicate the type of test 
vector that will be applied in the following cycle.

6.2.2 Test bus request B

TREQB is the test bus request B input signal.

During test this signal is used, in combination with TREQA, to indicate the type of test 
vector that will be applied in the following cycle.

6.2.3 Test acknowledge

TACK is the test bus acknowledge output signal and is required as a dedicated device 
pin.

The test bus acknowledge signal gives external indication that the test bus has been 
granted and also indicates when a test access has completed. When TACK is LOW the 
current test vector must be extended until TACK becomes HIGH. The TREQA and 
TREQB signals are only sampled by the TIC when TACK is HIGH.

Table 6-1 and Table 6-2 show the operation of the TREQA, TREQB and TACK 
signals. The signals have different functions depending on whether or not test mode has 
been entered.
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6.2.4 Test clock

TCLK is the test clock input signal.

In test mode, the internal bus clock is driven from the external TCLK source. This pin 
may be the normal clock oscillator source input or a port replacement signal. The 
system bus clock must not glitch when switching between normal and test mode.

On entry into test mode the TIC indicates that it has switched to the test clock input by 
asserting the TACK signal.

6.2.5 Test bus

TBUS[31:0] is the 32-bit bidirectional test port. 

The test bus is used as an input to apply address, control and write vectors. For read 
vectors the test bus is used as a device output. The test interface protocol ensures that a 
turnaround period is always provided when changing the direction of the test bus.

Table 6-1 Test control signals during normal operation

TREQA TREQB TACK Description

0 0 0 Normal operation

1 0 0 Enter test mode request

0 1 0 Reserved (for external master request)

- - 1 Test mode entered

Table 6-2 Test control signals during test mode

TREQA TREQB TACK Description

- - 0 Current access incomplete

1 1 1 Address vector, control vector or turnaround vector 

1 0 1 Write vector

0 1 1 Read vector

0 0 1 Exit test mode
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6.3 Test vector types

There are 5 types of test vector associated with the test interface:

• address vector

• write vector

• read vector

• control vector

• turnaround vector.

Address vector, control vector and turnaround vector are all indicated by the same value 
on the TREQA and TREQB signals. The following rules may be used to determine 
which type of vector is being applied.

• When a single address/control vector is applied it is an address vector.

• When a burst of address/control vectors are applied they are all address vectors, 
apart from the last which is a control vector.

• A read vector, or burst of read vectors, is always followed by a turnaround 
vector. This is the only occurrence of the turnaround vector. The ASB version of 
the test interface requires a single turnaround vector, while the AHB version 
requires two.
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6.4 Test interface controller

The Test Interface Controller (TIC) is a bus master that accepts test vectors from the 
external test bus, TBUS[31:0], and initiates bus transfers. The TIC latches address 
vectors and, when required, increments the address to allow read and write bursts of test 
vectors.

6.4.1 Test transfer parameters

The default TIC bus master operation when entering test mode is:

• 32-bit transfer width

• privileged system access.

This is sufficient for testing many embedded system designs and minimizes the on-chip 
test support logic. In the case of systems that require the above control signals to be 
dynamically changed, a control vector mechanism is used to update the control signals 
within the TIC.

Bit 0 of the control vector is used to indicate if the control vector is valid. Thus, if a 
control vector is applied with bit 0 LOW, the vector will be ignored and will not update 
the control information. This mechanism allows address vectors which have bit 0 LOW 
to be applied for many cycles without updating the control information.

6.4.2 Incremental addressing

In order to support burst accesses using the test interface the TIC may support 
incrementing of the bus address. The number of address bits that are incremented is 
dependent on the maximum burst access length that is required via the test interface. 
This is system-dependent but a typical implementation would use an 8-bit address 
incrementer, allowing burst access up to 1kB boundaries using word transfers.

The control vector also provides a mechanism to enable and disable the address 
incrementer within the TIC. This allows burst accesses to incremental addresses, as 
would be used for testing internal RAM. Alternatively, the address increment can be 
disabled, such that successive accesses of a burst occur to the same address, as would 
be required to continually read from a single peripheral register.

If the transfer size is changed dynamically then any address incrementer support for 
burst-mode accesses must be able to support increment by byte, halfword and word 
offsets, so adaptive address incrementer logic is required.

The address incrementer is disabled by default and must be enabled using a control 
vector prior to use.
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6.4.3 Entering test mode

In normal operating mode TREQA will be LOW, indicating that test access is not 
required and the test bus will be used as required for normal operation, which will 
usually be part of the external bus interface. Entering test mode allows test vectors to 
be applied externally that will cause transfers on the internal bus.

The following sequence is required in order to enter test mode:

1. TREQA is asserted to request test bus access.

2. Test mode is entered when the TIC has been granted the internal bus and this is 
indicated by the assertion of the TACK signal.

3. At this point TCLK will become the source of the internal clock signal.

4. When test mode has been entered TREQB is asserted to initiate an address 
vector.

The TIC will not perform any internal transfers until a valid address vector has been 
applied.

A synchronous tester would not be expected to poll TACK for the bus. Normally the 
TREQA signal would be asserted for a minimum number of cycles to guarantee to gain 
access to the bus (completion of the longest wait-state peripheral access or the 
maximum number of cycles for all bus masters to have completed their current 
instruction).

6.4.4 Address vectors

An address vector must be applied before any read or write operations can occur. The 
following sequence is required in order to apply an address vector:

1. TREQA and TREQB are both asserted HIGH indicating an address vector next 
cycle.

2. In the next cycle the address is applied to TBUS[31:0], while TREQA and 
TREQB change to reflect the type of test vector that will follow. 

In some high-speed systems it may be necessary to apply more than one address vector 
in succession, to allow sufficient time for the address to propagate from the external test 
bus through to the internal address bus. In such a case the TIC can negate TACK for 
the first cycle of the address vector, forcing a second cycle of address vector to be 
applied.
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6.4.5 Control vector

A control vector is always the last in a sequence of address vectors and is used to update 
control information within the TIC. The sequence is as follows:

1. TREQA and TREQB are asserted HIGH indicating an address vector next 
cycle.

2. In the next cycle the address is applied to TBUS[31:0]. TREQA and TREQB 
both remain HIGH as the control vector will occur in the following cycle.

3. In the next cycle the control information is applied to TBUS[31:0], while 
TREQA and TREQB change to reflect the type of test vector that will follow. 

4. Finally the transfer occurs on the internal bus.

It is possible to apply an invalid control vector, by setting bit 0 of the control vector 
LOW. This will not change the control information within the TIC.

6.4.6 Write test vectors

Once test mode has successfully been entered, read and write operations may be 
performed through the test interface. In order to perform a write operation internally it 
is necessary to supply an address followed by the write data.

The address used for the write transfer will depend on the preceding vectors and a write 
vector may occur after any of the following:

• a single address vector

• an address/control vector sequence

• another write test vector, forming a burst of writes

• a turnaround vector after a single read or burst of reads.

When an internal bus transfer is extended by the insertion of wait states this is indicated 
externally by the TACK signal going LOW. During the waited condition the TREQA 
and TREQB should change to indicate the vector type that will follow when the current 
vector has completed. However, it is important to note that in the case of a write vector 
the data should continue to be applied to TBUS[31:0].
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6.4.7 Read test vectors

In a similar manner to write test vectors, read test vectors may follow a number of 
different vectors, as listed below, and the address used for the transfer will depend on 
the preceding vectors:

• a single address vector

• an address/control vector sequence

• another read test vector, forming a burst of reads

• a single write or burst of writes.

A read, or burst of reads, must always be followed by a turnaround vector to prevent 
bus clash on the external TBUS signals. As for a write vector, if the external transfer is 
extended then this is indicated externally by the TACK signal going LOW. The read 
data should not be sampled externally until the internal transfer has completed.

6.4.8 Burst vectors

Multiple write vectors or read vectors may be joined together to form bursts of vectors. 
This enables test vectors to be applied at a much faster rate by removing the need for an 
address vector to be associated with each read or write vector.

Burst transfers may use either incrementing addresses or static addresses, depending on 
whether or not the TIC contains an address incrementer which is enabled. With no 
address incrementer the TIC will perform non-sequential transfers to a constant address.

If the TIC does contain an enabled address incrementer then the address used for each 
successive transfer will be incremented by the appropriate amount, which is dictated by 
the transfer size. 

6.4.9 Changing a burst direction

It is possible to change the transfer direction of a burst, from read to write or write to 
read.

If changing from read to write it is still necessary to insert a turnaround vector. This will 
not load a new address but will internally cause a new burst to be started allowing 
internal slaves to observe that the direction of the burst has altered. 
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6.4.10 Exiting test mode

Test mode is exited using the following sequence:

1. Apply a single cycle of address vector, which ensures any internal transfers have 
been completed.

2. TREQA and TREQB are both driven LOW to indicate that test mode is to be 
exited.

3. When the test interface has been configured for normal system operation TACK 
will go LOW to indicate that test mode has been exited.

It is important that test mode can be entered and exited cleanly so that diagnostic testing 
may be performed during system operation.
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6.5 The AHB Test Interface Controller

The following state diagram illustrates the operation of the TIC.

Figure 6-3 Test Interface Controller state diagram
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• At reset the TIC is in the IDLE state and will not be requesting use of the AHB. 
When in the IDLE state TACK is driven LOW to indicate that the test interface 
cannot be used.

• The TACK signal is used to control all transactions around the state machine, 
except for the transition from IDLE to START. In all other cases the state 
machine remains in the same state if the TACK signal is low.

• The TREQA signal is used to move from the IDLE state to the START state. 
This has been changed from the previous specification, which required TREQA 
to be high and TREQB to be low, and has the advantage that it is possible to use 
just TREQA to move from normal operation into test mode.

• In some system implementations it will be necessary to switch from an internal 
clock source to an external clock TCLK which is used during test mode. When 
TREQA first goes high this can be used as an indication that the clock source 
should be changed and a return signal that indicates when the clock switch has 
occurred successfully can be used to prevent the move into the START state until 
the test clock is in use.

• If clock switching is being used then it is possible that TREQA is asynchronous 
to the on-chip clock before test mode is entered and therefore a synchronizer is 
used to generate a synchronized version of TREQA to control the movement 
from the IDLE state to the START state.

• The START state is used to ensure that the first vector applied is an address 
vector to prevent read and write vectors occurring before the address has been 
initialized. The START state is only exited when TREQA/B indicate an address 
vector and the following state is ADDRVEC.

• In the ADDRVEC state the TIC registers the address on the TBUS. The 
ADDRVEC state is used for both address and control vectors, so additional logic 
is required to determine whether the value on TBUS should be considered as an 
address or as a control vector. If the previous cycle was an address vector and the 
following cycle (as indicated by TREQA/B) is not an address vector then the 
current cycle is a control vector.

• It is possible to stay in the ADDRVEC state for a number of cycles, but usually 
an address vector will be followed by either read or write transfers.

• If a write transfer is being performed the TIC moves into the WRITEVEC state 
at the same time that it initiates the transfer on the bus and multiple write 
transfers can be performed by remaining in the WRITEVEC state. Usually the 
WRITEVEC will be followed by an address vector, however it is also possible to 
move directly to read transfer by moving to the READVEC state.
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• When a read, or a burst of reads is performed the TIC enters the READVEC 
state. This state indicates that the TIC is starting a read transfer on the bus and it 
is not until the following cycle that the read data will appear. When the 
READVEC state is first entered the TBUS will be tristate, but will become 
driven for further cycles in the READVEC state.

• All read vectors must be followed by two turnaround vectors. For the first of 
these cycles the TIC will move into the LASTREAD state, during which the last 
read of the transfer will complete and will be driven out on to the external 
TBUS. During the LASTREAD state no internal transfers will be started and the 
TIC will perform IDLE transfers on the bus.

• Following the LASTREAD state the TIC moves into the TURNAROUND state, 
during which time the external TBUS will be tristate. The TURNAROUND state 
will usually be followed by an address vector, but it is also possible to go 
immediately to a write vector or another read.

• The usual method to exit from test is to return to the ADDRVEC state and then 
set TREQA/TREQB both LOW to return to IDLE and effectively exit from test. 
In fact, at any point the test mode can be exited by setting both TREQA and 
TREQB LOW and eventually this will cause the TIC to exit from test.

Note

When applying TIC vectors it is theoretically possible to assert the HLOCK output and 
then exit from the test. If this happens and then the TIC is granted the bus under normal 
operation it will effectively lock up the bus. No protection is provided within the TIC to 
prevent this occurrence.

6.5.1 Control vector

A control vector is included within the TIC to determine the types of transfer it can 
perform. The control vector is used to set the values of HSIZE, HPROT and HLOCK. 

The default TIC bus master operation when entering test mode is:

• 32-bit transfer width - HSIZE[1:0] signifies word transfer

• privileged system access - HPROT[3:0] signifies privileged data access, 
uncacheable and unbufferable.

Bit 0 of the control vector is used to indicate if the control vector is valid. Thus, if a 
control vector is applied with bit 0 LOW, the vector will be ignored and will not update 
the control information. This mechanism allows address vectors which have bit 0 LOW 
to be applied for many cycles without updating the control information.
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Although the default settings will be sufficient for testing many embedded system 
designs, the control vector can be used both to change the control signals of the transfer 
and also to determine whether the TIC should generate fixed addresses or incrementing 
addresses.

Table 6-3 defines the bit positions of the control vector. The control vector bit 
definitions are designed to be backwards compatible with earlier versions of the TIC 
and therefore not all of the control bits are in obvious positions.

There is no mechanism to control the types of burst that the TIC can perform and only 
incrementing bursts of an undefined length are supported. The TIC only supports 8-bit, 
16-bit and 32-bit transfers and therefore HSIZE[2] cannot be altered and will always 
be low.

In order to support burst accesses using the test interface the Test Interface Controller 
may support incrementing of the bus address. The TIC increments 8 address bits and 
the address range that can be covered by this incrementer is dependent on the size of the 
transfers being performed.

Table 6-3 Control vector bit definitions

Bit
position

Description

0 Control vector valid

1 Reserved

2 HSIZE[0]

3 HSIZE[1]

4 HLOCK

5 HPROT[0]

6 HPROT[1]

7 Address increment enable

8 Reserved

9 HPROT[2]

10 HPROT[3]
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The control vector provides a mechanism to enable and disable the address incrementer 
within the TIC. This allows burst accesses to incremental addresses, as would be used 
for testing internal RAM. Alternatively, the address increment can be disabled such that 
successive accesses of a burst occur to the same address, as would be required to 
continually read from a single peripheral register.

If HSIZE[1:0] is changed dynamically then any address incrementer support for burst-
mode accesses must be able to support increment by byte, halfword and word offsets, 
so adaptive address incrementer logic is required.

The address incrementer is disabled by default and must be enabled using a control 
vector prior to use.

Note

The control vector is primarily used to change signals which have the same timing as 
the address bus. However the control vector also allows the lock signal to be changed, 
which is actually required before the locked transfer commences. If the HLOCK signal 
is used during testing it should be set a transfer before it is required. This difference in 
timing on the HLOCK signal may in some cases cause an additional transfer to be 
locked both before and after the sequence that should in fact be locked.
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6.6 Example AMBA AHB test sequences

Example AHB test sequences are described under the following headings:

• Entering test mode

• Write test vectors on page 6-19

• Read transfers on page 6-20

• Control vector on page 6-21

• Burst vectors on page 6-22

• Read-to-write and write-to-read on page 6-23

• Exiting test mode on page 6-24.

6.6.1 Entering test mode

In normal operating mode TREQA will be LOW, indicating that test access is not 
required and the test bus will be used as required for normal operation, which will 
usually be part of the external bus interface. Entering test mode allows test vectors to 
be applied externally that will cause transfers on the internal bus.

The following sequence, as illustrated in Figure 6-4, is required in order to enter test 
mode:

1. TREQA is asserted to request test bus access.

2. Test mode is entered when the TIC has been granted the internal bus and this is 
indicated by the assertion of the TACK signal.

3. At this point TCLK will become the source of the internal HCLK signal.

4. When test mode has been entered TREQB is asserted to initiate an address 
vector.

5. The TIC will not perform any internal transfers until a valid address vector has 
been applied.
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Figure 6-4 Test start sequence
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6.6.2 Write test vectors

Figure 6-5 shows the sequence of events when applying a set of write test vectors. 
Initially an address vector is applied and this is followed by a write test vector.

Figure 6-5 Write test vector
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6.6.3 Read transfers

Read transfers are more complex because they require the TBUS to be driven in the 
opposite direction and therefore additional cycles are required to prevent bus clash 
when changing between different drivers of TBUS. Figure 6-6 shows a typical test 
sequence for reads.

Figure 6-6 Read test vector
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6.6.4 Control vector

The operation of the TIC may be modified by the use of a control vector. Whenever 
more than one address vector is applied in succession then the last vector is considered 
to be a control vector and is not latched as the address. Bit 0 of the control vector is used 
to determine whether or not the control vector should be considered valid, which allows 
multiple address vectors to be applied without changing the control information,

Figure 6-7 shows the process of inserting a control vector. 

Figure 6-7 Control vector
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6.6.5 Burst vectors

The examples of read and write transfers in Figure 6-5 on page 6-19 and Figure 6-6 on 
page 6-20 also show how additional transfers can be used to form burst transfers on the 
bus. The TIC has limited capabilities for burst transfers and can only perform 
undefined-length incrementing bursts.

The TIC contains an 8-bit incrementer and if an attempt is made to perform a burst 
which crosses the incrementer boundary then the address will wrap and the TIC will 
signal the transfer as NONSEQUENTIAL. The exact boundary at which this will occur 
is dependent on the size of the transfer. For word transfers the incrementer will overflow 
at 1kB boundaries, for halfword transfers it will overflow at 512-byte boundaries and 
for byte transfers the overflow will occur at 256-byte boundaries.
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6.6.6 Read-to-write and write-to-read

It is possible to switch between read transfers and write transfers without applying a 
new address vector. Usually this would be done with the address incrementer disabled, 
so that both the read transfers and the write transfers would be to the same address. It is 
also possible to do this with the incrementer enabled if the test circumstances require it.

Figure 6-8 Read then write transfers
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6.6.7 Exiting test mode

Test mode is exited using the following sequence:

1. Apply a single cycle of address vector, which causes an IDLE cycle internally, 
which ensures any internal transfers have been completed.

2. TREQA and TREQB are both driven LOW to indicate that test mode is to be 
exited.

3. When the test interface has been configured for normal system operation TACK 
will go LOW to indicate that test mode has been exited.

It is important that test mode can be entered and exited cleanly so that the TIC can also 
be used for diagnostic test during system operation, as well as production testing.
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6.7 The ASB test interface controller

Figure 6-9 shows the ASB test interface controller state diagram.

Figure 6-9 Test interface controller state diagram
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Table 6-4 Control vector bit definitions

Bit position Description

0 Control vector valid

1 Reserved

2 BSIZE[0]

3 BSIZE[1]

4 BLOK

5 BPROT[0]

6 BPROT[1]

7 Address increment enable
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6.8 Example AMBA ASB test sequences

Example ASB test sequences are described under the following headings:

• Entering test mode

• Address vectors on page 6-28

• Control vectors on page 6-29

• Write test vectors on page 6-31

• Changing burst direction on page 6-36

• Exiting test mode on page 6-37.

6.8.1 Entering test mode

Test mode is entered, as shown in Figure 6-10, using the following sequence:

1. TREQA is asserted to request test bus access.

2. Test mode is entered when the TIC has been granted the internal bus and this is 
indicated by the assertion of the TACK signal.

3. At this point TCLK will become the source of the internal BCLK signal.

4. When test mode has been entered TREQB is asserted to initiate an address 
vector.

Figure 6-10 Test start sequence
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6.8.2 Address vectors

An address vector must be applied before a read or write operation can occur. Figure 
6-11 shows an example of a single address vector followed by a write vector, the 
following sequence occurs:

1. TREQA and TREQB are both asserted HIGH to indicate an address vector next 
cycle.

2. In the next cycle the address is applied, while TREQA and TREQB change to 
indicate the type of test vector that will follow. During this cycle the address 
appears on the address bus.

3. In the next cycle the write (or read) vector is applied.

Figure 6-11 Address vector
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6.8.3 Control vectors

A control vector must always follow an address vector. Figure 6-12 shows an address 
and control vector sequence followed by a write vector. The following sequence occurs:

1. TREQA and TREQB both remain HIGH after the address vector has ended to 
indicate a control vector next cycle.

2. In the next cycle control information is applied to TBUS[31:0], while TREQA 
and TREQB change to reflect the type of test vector that will follow. During this 
cycle any internal signals, which have been affected by the control vector, will 
change.

Figure 6-12 Control vector
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Figure 6-13 shows an example of a transfer following an invalid control vector. The TIC 
performs a SEQUENTIAL transfer on the internal bus because the control signals have 
not changed.

Figure 6-13 Invalid control vector
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6.8.4 Write test vectors

Figure 6-14 shows an example of a single write vector following a single address vector.

Figure 6-14 Write test vectors
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Figure 6-15 shows an example of extended write vectors following a single address 
vector.

Figure 6-15 Extended write test vectors
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Figure 6-16 shows an example of a single address vector, followed by a single read 
vector and terminated with a single turnaround vector.

Figure 6-16 Read test vector
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Figure 6-17 shows SEQUENTIAL transfers to non-incrementing addresses.

Figure 6-17 Burst write vectors with increment disabled
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Figure 6-18 shows SEQUENTIAL transfers to incrementing addresses.

Figure 6-18 Burst write vectors with increment enabled
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6.8.5 Changing burst direction

Figure 6-19 below shows a burst changing direction from read to write.

Figure 6-19 Changing burst direction
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6.8.6 Exiting test mode

Figure 6-20 shows an exit from test mode.

Figure 6-20 Exiting test mode
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