YOVI 2008 Core

Interrupt Controller

(INTC)

Function Specifications

Rev 0.00

08/05/01

onic

Rev.	Revision content	Approved	Checked	Created
0.00	New created			Duong Dang 08/05/01
		~ 05		
Ċ	OR			
*				

Index and Table

1.	Sco	pe	4
2.	Feat	tures	4
3.	Bloc	ck Diagram	4
4.		Descriptions	
	Tab	le 4.1: Port Description	5
5.	Reg	ister Descriptions	
	5.1	Interrupt Control Register A to D (ICRA to ICRD)	
	5.2	Address Break Control Registers (ABRKCR) Break Registers A to C (BARA to BARC)	7
	5.3		7
	5.4	IRQ Sense Control Registers (ISCR16H, ISCR16L, ISCRH,	
	ISCRL	_)	10
	5.5	IRQ Enable Register (IER16, IER) IRQ Status Registers (ISR16, ISR)	14
	5.6	IRQ Status Registers (ISR16, ISR)	15
	5.7	Keyboard Matrix Interrupt Mask Registers (KMIMRA, KMII	MR6)
		16	
	Wake-	Up Event Interrupt Mask Register (WUEMR3)	16
6.	Inte	rrupt Sources	18
	6.1	External Interrupts	18
	6.2	Internal Interrupts	20
7.	Inte	rrupt Control Mode and Interrupt Operation	21
	7.1	Interrupt Mode 0	21
	7.2	Interrupt Mode 1	
	7.3	Interrupt Exception Handling Sequence	25
	7.4	Interrupt Response Time	27
	7.5	DTC Activation by Interrupt	27
	6	ante	

1. Scope

This document is the Interrupt Controller.

2. Features

Interrupt controller has some features:

- Two interrupt control modes.
- Priorities settable with ICR.
- Three-level interrupt mask control.
- Independent vector addresses.
- ➢ Forty-one external interrupts.
- > DTC.

3. Block Diagram

Figure 3.1: Interrupt Controller block diagram

4. Port Descriptions

Table below shows the Interrupt Controller port descriptions

Name	I/O	Function
NMI	Input	Nonmaskable external interrupt.
		Rising edge or falling edge can be selected.
IRQ15 to IRQ0 ExIRQ15 to ExIRQ2	Input	Maskable external interrupts
		Rising edge, falling edge or both edges, or level sensing can be selected individually for each pin. Pin of IRQn or ExIRQn to input IQR15 to IQR12
		interrupts can be selected.
KIN15 to KIN0	Input	Maskable external interrupts.
		An interrupt is requested at falling edge.
WUE15 to WUE8	Input	Maskable external interrupts.
		An interrupt is requested at falling edge.

Table 4.1: Port Description

5. Register Descriptions

This FRC has the following registers:

- Interrupt control register A to D (ICRA to ICRD)
- Address break control register (ABRKCR)
- Break address register A to C (BARA to BARC)
- IRQ sense control registers (ISCR16H, ISCR16L, ISCRH, ISCRL)
- IRQ enable registers (IER16, IER)
- IRQ status registers (ISR16, ISR)
- Keyboard matrix interrupt mask registers (KMIMRA, KMIMR6)
- Wake-up event interrupt mask register (WUEMR3)

5.1 Interrupt Control Register A to D (ICRA to ICRD)

The ICR registers set interrupt control levels for interrupts other than NMI.

Bit	7	6	5	4	3	2	1	0	
	ICR7	ICR6	ICR5	ICR4	ICR3	ICR2	ICR1	ICR0	
Initial value	0	0	0 0 0 0 0				0		
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Bit Bit Name	Initi	al Value	R/W	Descript	tion		• . 6		
7 to 0 ICRn7 to I	RCn0 All 0)	R/W	Interrupt Control Level					
					sponding ir evel 0 (no p	nterrupt so priority)	urce is inte	errupt	
					sponding ir evel 1 (prio	nterrupt so rity)	urce is inte	errupt	
[Legend]									
n: AtoD									

Figure 5.1: The correspondence between interrupt sources ICRA to ICRD settings

		Register							
Bit	Bit Name	ICRA	ICRB	ICRC	ICRD				
7	ICRn7	IRQ0	A/D converter	SCI_0	IRQ8 to IRQ11				
6	ICRn6	IRQ1	FRT	SCI_1	IRQ12 to IRQ15				
5	ICRn5	IRQ2, IRQ3	—	SCI_2	—				
4	ICRn4	IRQ4, IRQ5	TMR_X	IIC_0	—				
3	ICRn3	IRQ6, IRQ7	TMR_0	IIC_1	_				
2	ICRn2	DTC	TMR_1	IIC_2, IIC_3	_				
1	ICRn1	WDT_0	TMR_Y	LPC	_				
0	ICRn0	WDT_1	IIC_4, IIC_5	_	—				

[Legend]]

n: A to D

--: Reserved. The write value should always be 0.

Figure 5.2: Correspondence between Interrupt Source and ICR

5.2 Address Break Control Registers (ABRKCR) ABRKCR:

- Controls the address breaks.
- An address break is requested, CMF flag = BIE flag = 1

Bit		7	6	5	4	3	2	1	0		
		CMF						_	BIE		
Initial	value	0	0	0	0	0	0	0	0		
Read/Write		R	R	R	R	R	R	R	R/W		
Bit	Bit Name	Initial	Value	R/W	Descriptior	า					
7	CMF	Undef	ined	R	Condition M	latch Flag					
						ess break source flag. Indicates that an ess specified by BARA to BARC is prefetched.					
					[Clearing co	ndition]					
					When an ex address bre		-	executed f	or an		
					[Setting con	[Setting condition]					
					When an ac prefetched v				ARC is		
6 to 1	_	All 0		R	Reserved						
					These bits a modified.	are always	read as 0	and cann	ot be		
0	BIE	0		R/W	Break Interr	upt Enable	э				
					Enables or (disables a	ddress bre	ak.			
					0: Disabled						
					1: Enabled						

5.3 Break Registers A to C (BARA to BARC)

BARA to BARC:

- Specify an address that is to be a break address.

An address in which the first byte of an instruction exists should be set as a break address.

In normal mode, addresses A23 to A16 are not compared.

BARA								
Bit	7	6	5	4	3	2	1	0
	A23	A22	A21	A20	A19	A18	A17	A16
Initial value	0	0	0	0	0	0	0	0
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
							•	
Bit Bit Name		Value	R/W	Descrip				
7 to 0 A23 to A16	6 All 0		R/W		es 23 to 16			
					to A16 bit ne internal		pared with us.	A23 to
BARB					2			
Bit	7	6	5	4	3	2	1	0
	A15	A14	A13	A12	A11	A10	A9	A8
Initial value	0	0	0	0	0	0	0	0
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
		\sim						
Bit Bit Name	Initial	Value	R/W	Descrip	tion			
7 to 0 A15 to A8	All 0		R/W	Address	es 15 to 8			
					to A8 bits internal a		ared with A s.	A15 to
COY	7							

D A	DC
DA	nu

Bit		7	6	5	4	3	2	1	0		
		A7	A6	A5	A4	A3	A2	A1	A0		
Initial	value	0	0	0	0	0	0	0	0		
Read/	Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R		
Bit	Bit Name	Initial	Value	R/W	Descript	tion					
7 to 1	A7 to A1	All 0		R/W	Address	es 7 to 1					
						o A1 bits a ernal addr		red with A	7 to A1		
0	_	0		R	Reserve	d					
		This bit is always read as 0 and cannot be modified.									
C ,			65								

5.4 IRQ Sense Control Registers (ISCR16H, ISCR16L, ISCRH, ISCRL)

IRQ Sense Control Registers:

South

- Select the source that generates an interrupt request at pins $\overline{\text{IRQ15}}$ to $\overline{\text{IRQ0}}$ or pins $\overline{\text{ExIRQ15}}$ to $\overline{\text{ExIRQ2}}$.

ISCR16H

ISCRIUII							/	
Bit	7	6	5	4	3	2	1	0
	IRQ							
	15SCB	15SCA	14SCB	14SCA	13SCB	12SCA	12SCB	12SCA
Initial value	0	0	0	0	0	0	0	0
Read/Write	R/W							

3 L

Bit	Bit Name	Initial Value	R/W	Description
7	IRQ15SCB	0	R/W	IRQn Sense Control B
6	IRQ15SCA	0	R/W	IRQn Sense Control A
5	IRQ14SCB	0	R/W	00: Interrupt request generated at low level of
4	IRQ14SCA	0	R/W	IRQn or ExIRQn input
3	IRQ13SCB	0	R/W	01: Interrupt request generated at falling edge
2	IRQ13SCA	0	R/W	of IRQn or ExIRQn input
1	IRQ12SCB	0	R/W	10: Interrupt request generated at rising edge of
0	IRQ12SCA	0	R/W	IRQn or ExIRQn input
				11: Interrupt request generated at both falling and rising edges of IRQn or ExIRQn input
				(n = 15 to 12)

100111										
Bit		7		6	5	4	3	2	1	0
		IRO	2	IRQ	IRQ	IRQ	IRQ	IRQ	IRQ	IRQ
		11SC	СВ	11SCA	10SCB	10SCA	9SCB	9SCA	8SCB	8SCA
Initial	itial 0 0 0				0	0	0	0	0	0
value										
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W										R/W
Bit	Bit Na	me	Initi	al Value	R/W	Descripti	on	J.		
7	IRQ11	SCB	0		R/W	IRQn Sen	se Contro	IВ		
6	IRQ11	SCA	0		R/W	IRQn Sen	se Contro	IA		
5	IRQ10		0		R/W	00: Interru			d at low le	evel of
4	IRQ10	SCA	0		R/W	_ IRQn d	or ExIRQn	input		
3	IRQ9S		0		R/W	01: Interru			d at falling	g edge
2	IRQ9S	CA	0		R/W	_	n or ExIR			
1	IRQ8S		0		R/W	10: Interru		-	d at rising	edge of
0	IRQ8S	CA	0		R/W		or ExIRQn	•		
						11: Interru and ris	ipt reques ing edges			
						(n = 11 to	8)			

ISCR16L

South

ISCR	H								
Bit		7	6	5	4	3	2	1	0
		IRQ	IRQ	IRQ	IRQ	IRQ	IRQ	IRQ	IRQ
		7SCB	7SCA	6SCB	6SCA	5SCB	5SCA	4SCB	4SCA
Initial	l value	0	0	0	0	0	0	0	0
Read/	Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bit	Bit Name	Initial Va		R/W	Decerinti			• 1	
					Descriptio				
7 IRQ7SCB		0			IRQn Sens		-		
6 IRQ7SCA		0	F	R/W	IRQn Sens	se Control	A		

6	IRQ7SCA	0	R/W	IRQn Sense Control A
5	IRQ6SCB	0	R/W	00: Interrupt request generated at low level of IRQn or ExIRQn input
4	IRQ6SCA	0	R/W	
3	IRQ5SCB	0	R/W	01: Interrupt request generated at falling edge
2	IRQ5SCA	0	R/W	of IRQn or ExIRQn input
1	IRQ4SCB	0	R/W	10: Interrupt request generated at rising edge of
0	IRQ4SCA	0	R/W	IRQn or ExIRQn input
				 Interrupt request generated at both falling and rising edges of IRQn or ExIRQn input
				(n = 7 to 4)

TOODT

ISCR	L									
Bit		7	6	5	4	3	2	1	0	
		IRQ 3SCB	IRQ 3SCA	IRQ 2SCB	IRQ 2SCA	IRQ 1SCB	IRQ 1SCA	IRQ 0SCB	IRQ 0SCA	
Initial value		0	0	0	0	0	0	0	0	
Read/Write		R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
D:4	Bit Name	Initial V	-luc f		Descriptio			•.2		
Bit				R/W	Descriptio		-			
7 6	IRQ3SCB IRQ3SCA	0 0		R/W R/W	IRQn Sens IRQn Sens		-			
5	IRQ2SCB	0			00: Interru			d at low la	velof	
4	IRQ2SCB	0	-	7/W		r ExIRQn		u al low le	101	
3	IRQ1SCB	0	F	R/W	01: Interru			d at falling	edge	
2	IRQ1SCA	0	F	R/W		n or ExIRC	*	0	Ŭ	
1	IRQ0SCB	0	F	R/W	10: Interrupt request generated at rising edge of					
0	IRQ0SCA	0	F	R/W	I RQn o	r ExIRQn	* input			
					11: Interru and ris			d at both fa r ExIRQn*		
					(n = 3 to 0)				
Note:	* EviDOn	stands for								

Note: * ExIRQn stands for ExIRQ3 or ExIRQ2.

5.5 IRQ Enable Register (IER16, IER)

Enable or disable of interrupt requests IRQ15 to IRQ0

IER16

Bit		7	6	5	4	3	2	1	0
		IRQ 15E	IRQ 14E	IRQ 13E	IRQ 12E	IRQ 11E	IRQ 10E	IRQ 9E	IRQ 8E
Initial	value	0	0	0	0	0	0	0	0
Read/	Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bit	Bit Name	Initial Va	lue	R/W	Descriptio				
7 to 0	IRQ15E to			R/W	IRQn Enab		to 9)		
7100	IRQ15E IO	All U		n/w					
	III GOL				The IRQn bit is 1.	interrupt re	equest is e	nabled wr	ien this
IER					O				
Bit		7	6	5	4	3	2	1	0
		IRQ	IRQ	IRQ	IRQ	IRQ	IRQ	IRQ	IRQ
		7E	6E	5E	4E	3E	2E	1E	0E
Initial	lvalue	0	0	0	0	0	0	0	0
Read/	Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bit	Bit Name	Initial Val	ue	R/W	Descriptio	n			
7 to 0	IRQ7E to	All 0		R/W	IRQn Enat	ole (n = 7 t	o 0)		
	IRQ0E				The IRQn bit is 1.	interrupt re	equest is e	enabled wi	hen this
	7								

5.6 IRQ Status Registers (ISR16, ISR)

IRQ status registers:

- Are flag registers.
- Indicate the status IRQ15 to IRQ0 interrupt requests.

ISR16

Bit	7	6	5	4	3	2	1	0
	IRQ15F	IRQ14F	IRQ13F	IRQ12F	IRQ11F	IRQ10F	IRQ9F	IRQ8F
Initial value	0	0	0	0	0	0	0	0
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bit Bit N	ame Init	tial Value	R/W	Description	-			
7 to 0 IRQ1		0	R/W	[Setting cond	dition]			
IRQ8	F					ource selecte	d by the	
					registers occ	urs		
				[Clearing co	nditions]			
					ading IRQnF ing 0 to IRQı	flag when IF nF flag	RQnF = 1,	
						tion handling	-	
						evel detectior	n is set	
						input is high		
						exception ha	•	
					e detection i	g-edge, rising s set	-eage, or	
				0		0.001		
				(n = 15 to	o 8)			

ISR									
Bit		7	6	5	4	3	2	1	0
		IRQ7F	IRQ6F	IRQ5F	IRQ4F	IRQ3F	IRQ2F	IRQ1F	IRQ0F
Initia	l value	0	0	0	0	0	0	0	0
Read	/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bit	Bit Name	Initial V	'alue F	R/W D	escription		•		
7 to 0	IRQ7F to IRQ0F	All 0	F	R/W [S	Setting cond When the ISCR reg Clearing cor When rea then writi When writi executed and IRQr When IRQ executed	dition] e interrupt s gisters occu nditions] ading IRQn ng 0 to IRQ errupt exce when low- or ExIRQ on interrup when fallir e detection	F flag wher hF flag ption handl level detect is input is h t exception ng-edge, ris	n IRQnF = 1 ling is tion is set	
Note:	* ExIRQn	stands for	ExIRQ7 to	ExIRQ2.					

5.7 Keyboard Matrix Interrupt Mask Registers (KMIMRA, KMIMR6)

Wake-Up Event Interrupt Mask Register (WUEMR3) KMIMR and WUEMR:

- Enable and disable key-sensing interrupt inputs ($\overline{\text{KIN15}}$ to $\overline{\text{KIN0}}$).

Wake-up event interrupt inputs ($\overline{WUE15}$ to $\overline{WUE8}$).

KMIMRA, KMIMR6 and WUEMR3 registers can be accessed when the KINWUE bit in SYSCR is set to 1.

KMIM	IRA									
Bit		7	6	5	4	3	2	1	0	
	K	MIM15	KMIM14	KMIM13	KMIM12	KMIM11	KMIM10	KMIM9	KMIM8	
Initial Val	ue	1	1	1	1	1	1	1	1	
Read/Writ	te	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Bit	Bit Na	me Ir	nitial Value	R/W	Descriptio	n	•	2		
7 to 0	KMIM	5 to A	1	R/W	•	Matrix Interru	pt Mask		-	
	KMIM				These bits		able a key-s	a key-sensing		
					0: Enables	a key-sensin	ig input interi	upt request		
					1: Disables request	a key-sensir	ng input inter	rupt		
KMIM	IR6								-	
Bit		7	6	5	4	3	2	1	0	
	I	KMIM7	KMIM6	KMIM5	KMIM4	KMIM3	KMIM2	KMIM1	KMIM0	
Initial valu	ue	1	1	1	1	1	1	1	1	
Read/Writ	te	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Bit	Bit Na	me In	itial Value	R/W	Descriptio	on				
	KMIM7		1	R/W	Keyboard	Matrix Interru	ıpt Mask		_	
	KMIMO)			These bits enable or disable a key-sensing input interrupt request (KIN7 to KIN0).					
					0: Enables	a key-sensir	ng input inter	rupt reques	t	
					1: Disables request	s a key-sensi	ng input inte	rrupt		

Bit		7	6	5	4	3	2	1	0
		WUEM15	WUEM14	WUEM13	WUEM12	WUEM11	WUEM10	WUEM9	WUEM8
Initia	al value	2 1	1	1	1	1	1	1	1
Read	/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
	Bit	Bit Name	Initial Value	R/W	Descript	tion			
	Bit 7 to 0	WUEM15 to	Initial Value	R/W	•	tion Event Inter	rupt Mask		
					Wake-Up These bi	o Event Inter ts enable or	rupt Mask disable a wa st (WUE15 to		ıt.
		WUEM15 to			Wake-Up These bi input inte	o Event Inter ts enable or errupt reques es a wake-up	disable a wa	WUE8).	ut
		WUEM15 to			Wake-Up These bi input inte 0: Enable reques	o Event Inter ts enable or errupt reques es a wake-up st es a wake-u	disable a wa st (WUE15 to	WUE8). interrupt	nt

WUERM3

6. Interrupt Sources

6.1 External Interrupts

There are four external interrupts:

- NMI Interrupt: is the highest-priority interrupt, and is always accepted by the CPU regardless of the interrupt control mode or the status of the CPU interrupt mask bits. The NMIEG bit in SYSCR can be used to select whether an interrupt is requested at the rising edge or a falling edge on the NMI pin.

- IRQ15 to IRQ0 Interrupts: are requested by an input signal at pins IRQ15 to IRQ0 or pins ExIRQ15 to ExIRQ2. They have following features:

- The interrupt exception handling for interrupt requests IRQ15 to IRQ0 can be started at an independent vector address.
- Using ISCR to select whether an interrupt is generated by a low level, falling edge, rising edge, or both edges at pins IRQ15 to IRQ0 or pins ExIRQ⁵ to ExIRQ2.

- Enabling or disabling of interrupt requests IRQ15 to IRQ0 can be selected with IER.
- The status of interrupt request IRQ15 to IRQ0 is indicated in ISR. ISR flags can be cleared to 0 by software.

Figure 6.1: Block diagram of Interrupts IRQ15 to IRQ0

- KIN15 to KIN0 Interrupts, WUE15 to WUE8 Interrupts: Interrupts KIN15 to KIN0 and WUE15 to WUE8 are requested by an input signal at pins KIN15 to KIN0 and WUE15 to WUE8. They have the following features:
 - The interrupts KIN15 and KIN8, KIN7 to KIN0 and WUE15 to WUE8 each form a group.
 - The interrupt exception handling for an interrupt request from the same group is started at the same vector address.
 - Enabling or disabling of interrupt requests can be selected with the I bit in CCR.• An interrupt is generated by a falling edge at pins
 KIN15 to KIN0 and WUE15 to WUE8.
 - Enabling or disabling of interrupt requests KIN15 to KIN0 and WUE15 to WUE8 can be selected using KMIMRA, KMIMR6, and WUEMR3.
 - The status of interrupt requests KIN15 to KIN0 and WUE15 to WUE8 are not indicated.

Figure 6.2: Block Diagrams of Interrupts KIN15 to KIN0 and WUE15 to WUE8 (Example of KIN15 to KIN0)

6.2 Internal Interrupts

Internal interrupts issued from the on-chip peripheral modules have the following features:

- For each on-chip peripheral module there are flags that indicate the interrupt request status, and enable bits that individually select enabling or disabling of these interrupts. When the enable bit for a particular interrupt source is set to 1, an interrupt request is sent to the interrupt controller.
- The control level for each interrupt can be set by ICR.
- The DTC can be activated by an interrupt request from an on-chip peripheral module.
- An interrupt request that activates the DTC is not affected by the interrupt control mode or the status of the CPU interrupt mask bits.

7. Interrupt Control Mode and Interrupt Operation

7.1 Interrupt Mode 0

South

In Interrupt control mode 0, interrupts other than NMI are masked by ICR and the I bit of the CCR in the CPU. Figure below shows a flowchart of the interrupt acceptance operation.

- 1. If an interrupt source occurs when the corresponding interrupt enable bit is set to 1, an interrupt request is sent to the interrupt controller.
- 2. According to the interrupt control level specified in ICR, the interrupt controller accepts an interrupt request with interrupt control level 1 (priority), and holds pending an interrupt request with interrupt control level 0 (no priority). If several interrupt requests are issued, an interrupt request with the highest priority is accepted according to the priority order, an interrupt handling is requested to the CPU, and other interrupt requests are held pending.
- If the I bit in CCR is set to 1, only NMI and address break interrupt requests are accepted by the interrupt controller, and other interrupt requests are held pending. If the I bit is cleared to 0, any interrupt request is accepted. KIN, WUE, and EVENTI interrupts are enabled or disabled by the I bit.
- When the CPU accepts an interrupt request, it starts interrupt exception handling after execution of the current instruction has been completed.
- The PC and CCR are saved to the stack area by interrupt exception handling. The PC saved on the stack shows the address of the first instruction to be executed after returning from the interrupt handling routine.
- Next, the I bit in CCR is set to 1. This masks all interrupts except for NMI and address break interrupts.
- The CPU generates a vector address for the accepted interrupt and starts execution of the interrupt handling routine at the address indicated by the contents of the vector address in the vector table.

Figure 7.1: Flowchart of Procedure up to Interrupt Acceptance

in Interrupt Control Mode 0

7.2 Interrupt Mode 1

3010

In interrupt control mode 1, mask control is applied to three levels for IRQ and onchip peripheral module interrupt requests by comparing the I and UI bits in CCR in the CPU, and the ICR setting.

- An interrupt request with interrupt control level 0 is accepted when the I bit in CCR is cleared to 0. When the I bit is set to 1, the interrupt request is held pending. EVENTI, KIN, and WUE interrupts are enabled or disabled by the I bit.
- An interrupt request with interrupt control level 1 is accepted when the I bit or UI bit in CCR is cleared to 0. When both I and UI bits are set to 1, the interrupt request is held pending.

Figure 7.2: State Transition in Interrupt Control Mode 1

- If an interrupt source occurs when the corresponding interrupt enable bit is set to 1, an interrupt request is sent to the interrupt controller.
- 2. According to the interrupt control level specified in ICR, the interrupt controller only accepts an interrupt request with interrupt control level 1 (priority), and holds pending an interrupt request with interrupt control level 0 (no priority). If several interrupt requests are issued, an interrupt request with the highest priority is accepted according to the priority order, an interrupt handling is requested to the CPU, and other interrupt requests are held pending.
- An interrupt request with interrupt control level 1 is accepted when the I bit is cleared to 0, or when the I bit is set to 1 while the UI bit is cleared to 0.

An interrupt request with interrupt control level 0 is accepted when the I bit is cleared to 0. When both the I and UI bits are set to 1, only NMI and address break interrupt requests are accepted, and other interrupts are held pending.

When the I bit is cleared to 0, the UI bit is not affected.

Service

- When the CPU accepts an interrupt request, it starts interrupt exception handling after execution of the current instruction has been completed.
- The PC and CCR are saved to the stack area by interrupt exception handling. The PC saved on the stack shows the address of the first instruction to be executed after returning from the interrupt handling routine.
- The I and UI bits in CCR are set to 1. This masks all interrupts except for NMI and address break interrupts.
- The CPU generates a vector address for the accepted interrupt and starts execution of the interrupt handling routine at the address indicated by the contents of the vector address in the vector table.

SEMICON Confidential

Figure 7.3: Flowchart of Procedure Up to Interrupt Acceptant in Interrupt Control Mode 1

7.3 Interrupt Exception Handling Sequence

In interrupt control mode 1, mask control is applied to three levels for IRQ and onchip peripheral module interrupt requests by comparing the I and UI bits in CCR in the CPU, and the ICR setting.

Figure 7.2: Interrupt Exception Handling

No.	Execution Status	Advanced Mode
1	Interrupt priority determination*1	3
2	Number of wait states until executing instruction ends*2	1 to (19 + 2·Sı)
3	PC, CCR stack save	2-Sк
4	Vector fetch	2-Si
5	Instruction fetch*3	2-Si
6	Internal processing* ⁴	2
	Total (using on-chip memory)	12 to 32

7.4 Interrupt Response Time

Notes: 1. Two states in case of internal interrupt.

- 2. Refers to MULXS and DIVXS instructions.
- 3. Prefetch after interrupt acceptance and prefetch of interrupt handling routine.
- 4. Internal processing after interrupt acceptance and internal processing after vector fetch.

Figure 7.3: Interrupt Response Time

	Object of Access							
		8-E	Extern Bit Bus	16-Bit Bus				
Symbol	Internal Memory	2-State Access	3-State Access	2-State Access	3-State Access			
Instruction fetch Si	1	4	6 + 2m	2	3 + m			
Branch address read SJ								
Stack manipulation Sĸ								

[Legend]

Number of wait states in external device access. m:

Figure 7.4: Number of States in Interrupt Handling Routine Execution Status

DTC Activation by Interrupt 7.5

The DTC can be activated by an interrupt. In this case, the following options are available:

- Interrupt request to CPU.
- Activation request to DTC. _
- Both of the above. _

The interrupt controller has three main functions in DTC control.

- Selection of Interrupt Source: It is possible to select DTC activation request or CPU interrupt request with the DTCE bit of DTCERA to DTCERE in the DTC. After a DTC data transfer, the DTCE bit can be cleared to 0 and an interrupt request sent to the CPU in accordance with the specification of the DISEL bit of MRB in the DTC. When the DTC performs the specified number of data transfers and the transfer counter reaches 0, following the DTC data transfer the DTCE bit is cleared to 0 and an interrupt request is sent to the CPU.
- **Determination of Priority:** The DTC activation source is selected in accordance with the default priority order, and is not affected by mask or priority levels. See section 7.5, Location of Register Information and DTC Vector Table, for the respective priorities.
 - **Operation Order:** If the same interrupt is selected as a DTC activation source and a CPU interrupt source, the DTC data transfer is performed first, followed by CPU interrupt exception handling.

	Settings				
	DTC	Interrupt Source Selection/Clearing Contro			
DTCE	DISEL	DTC	CPU		
0	*	×	Δ		
1	0	Δ	×		
	1	0	Δ		

[Legend]

 The relevant interrupt is used. Interrupt source clearing is performed. (The CPU should clear the source flag in the interrupt handling routine.)

O: The relevant interrupt is used. The interrupt source is not cleared.

X: The relevant interrupt cannot be used.

*: Don't care

Figure 7.6: Interrupt Source Selection and Clearing Control

-End-